Application of Srivastava-Attiya Operator to the Generalization of Mocanu Functions

Main Article Content

Khalida Inayat Noor, Shujaat Ali Shah

Abstract

In this paper we introduce certain subclasses of analytic functions by applying Srivastava-Attiya operator. Our main purpose is to derive inclusion results by using concept of conic domain and subordination techniques. We also deduce some new as well as well-known results from our investigations.

Article Details

References

  1. J.W. Alexander, Functions which map the interior of the unit circle upon simple regions, Ann. Math. (Ser. 2). 17 (1915), 12-22.
  2. H.A. Al-Kharsani and A. Sofo, Subordination results on harmonic k-uniformly convex mappings and related classes, Comput. Math. Appl. 59 (2010), 3718-3726.
  3. S.D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Mat. Soc. 135 (1969), 429-446.
  4. J. Dziok, Classes of functions associated with bounded Mocanu variation, J. Inequal. Appl. 2013 (2013), Art. ID. 349.
  5. I.B. Jung, Y.C. Kim, and H.M. Srivastava, The Hardy space of analytic functions associated with certain one-parameter families of integral operators, J. Math. Anal. Appl. 176 (1993), 138-147.
  6. S. Kanas, Subordinations for domains bounded by conic sections, Bull. Belg. Math. Soc. Simon Stevin. 15 (2008), 589-598.
  7. S. Kanas, Techniques of the differential subordination for domains bounded by conic sections, Int. J. Math. Math. Sci. 38 (2003), 2389-2400.
  8. S. Kanas and A. Wisniowska, Conic domain and starlike functions, Rev. Roumaine Math. Pures Appl. 45 (2000), 647-657.
  9. S. Kanas and A. Wisniowska, Conic regions and k-uniform convexity, J. Comput. Math. 105 (1999), 327-336.
  10. R.J. Libera, Some classes of regular univalent functions, Proc. Amer. Math. Soc. 16 (1965), 755-758.
  11. S.S. Miller and P.T. Mocanu, Differential subordinations and applications, Marcel Dekker, Inc. New York-Basel. 2000.
  12. S.S. Miller and P.T. Mocanu, Differential subordinations and univalent functions, Michigan Math. J. 28 (1981), 157-171.
  13. P.T. Mocanu, Une propriete de convexite generlise dans la theorie de la representation conforme, Mathematica (Cluj). 11 (1969), 127-133.
  14. K.I. Noor, On generalization of uniformly convex and related functions, Comput. Math. Appl. 61 (2011), 117-125.
  15. K.I. Noor and S. Hussain, On certain analytic functions associated with Ruscheweyh derivatives and bounded Mocanu variation, J. Math. Anal. Appl. 340 (2008), 1145-1152.
  16. K.I. Noor and S.N. Malik, On coefficient inequalities of functions associated by conic domains, Comput. Math. Appl. 62 (2011), 2209-2217.
  17. K.I. Noor and S.N. Malik, On generalized bounded Mocanu variation associated with conic domain, Math. Comput. Modell. 55 (2012), 844-852.
  18. K.I. Noor and A. Muhammad, On analytic functions with generalized bounded Mocanu variation, Appl. Math. Comput. 196 (2008), 802-811.
  19. K.I. Noor and W. Ul-Haq, On some implication type results involving generalized bounded Mocanu variations, Comput. Math. Appl. 63 (2012), 1456-1461.
  20. D. R˘aducanu and H.M. Srivastava, A new class of analytic functions defined by means of convolution operator involving Hurwitz-Lerch Zeta function, Integral Transforms Spec. Funct. 18 (2007), 933-943.
  21. A. Rasheed, S. Hussain, M.A. Zaighum and Z. Shareef, Analytic functions related with Mocanu class, Int. J. Anal. Appl. 16 (2018), 783-792.
  22. S. Sivasubramanian, M. Govindaraj and K. Piejko, On certain class of univalent functions with conic domains involving Sokol-Nunokawa class, U.P.B. Sci. Bull. Series A. 80 (2018), 123-134.
  23. J. Sokol and M. Nunokawa, On some class of convex functions, C. R. Math. Acad. Sci. Paris. 353 (2015), 427-431.
  24. H.M. Srivastava and A.A. Attiya, An integral operator associated with the Hurwitz-Lerch Zeta function and differential subordination. Integral Transforms Spec. Funct. 18 (2007), 207-216.
  25. H.M. Srivastava and J. Choi, Series Associated with the Zeta and Related Functions, Dordrecht, Boston, London, Kluwer Academic Publishers, 2001.