Nonlinear (m, p)-Isometric And (2, p)-Concave Mappings on Complex Normed Spaces
Main Article Content
Abstract
Let $ S$ be a self mapping on a complex normed space ${\mathcal X}$. In this paper, we study the class of mappings satisfying the following condition
$$ \sum_{0\leq k \leq m}(-1)^{m-k}\binom{m}{k}\big\|S^kx-S^ky\big\|^p=0,$$
for all $x,y\in X$, where $m$ is a positive integer. We prove some of the properties of these classes of mappings.
Article Details
References
- J. Agler and M. Stankus, m-Isometric transformations of Hilbert space I, Integral Equations Oper. Theory, 21 (4) (1995), 383-429.
- J. Agler, M. Stankus, m-Isometric transformations of Hilbert space II, Integral Equations Oper. Theory, 23 (1) (1995), 1-48.
- J. Agler, M. Stankus, m-Isometric transformations of Hilbert space III, Integral Equations Oper. Theory, 24 (4) (1996), 379-421
- J. Agler, A disconjugacy theorem for Toeplitz operators, Amer. J. Math. 112 (1990), 1-14.
- D. Alpay, H. T. Kaptanoglu, Toeplitz Operators on Arveson and Dirichlet Spaces, Integral Equations Oper. Theory, 58 (2007), 1-33.
- A. Athavale, Some operator theoretic calculus for positive definite kernels, Proc. Amer. Math. Soc. 112 (1991), 701-708.
- F. Bayart, m-isometries on Banach spaces, Math. Nachr. 284 (2011), 2141-2147.
- T. Berm ´udez, A. Martin ´on , J. A. Noda, Products of m-isometries , Linear Algebra Appl. 438 (1) (2013), 80-86.
- T. Berm ´udez, A. Martin ´on and V. M ¨uller, (m, q)-isometries on metric spaces, J. Oper. Theory, 72 (2) (2014), 313-329.
- F. Botelho, J. Jamison, Isometric properties of elementary operators, Linear Algebra Appl. 432 (2010), 357-365.
- M. Cho, S. Ota, K. Tanahash, Invertible weighted shift operators which are m-isometrie; Proc. Amer. Math. Soc. 141 (2013), 4241-4247.
- B. P. Duggal, Tensor product of n-isometries III, Funct. Anal. Approx. Comput. 4 (2012), 61-67.
- C. Gu, On (m, p)-expansive and (m, p)-contractive operators on Hilbert and Banach spaces. J. Math. Anal. Appl. 426 (2015), 893-916.
- K. Hedayatian, A class of four-isometries on function spaces, Italian J. Pure Appl. Math. 16 (2004), 193-200.
- F. Qi and B. N. Guo, Monotonicity of sequences involvung convex function and sequence, Math. Inqual. Appl. 9 (2) (2006), 247-254.
- H. Khodaei and A. Mohammadi, Generalizations of Alesandarov Problem and Mazur-Ulam theorem for two-isometries and two-expansive mappings, Commun. Korean Math. Soc. 34 (3) (2019), 771-782.
- E. Ko, J. Lee, On m-isometric Toeplitz operators, Bull. Korean Math. Soc. 55 (2018), 367-378.
- P. Hoffman, M. Mackey and M. O Searc ´oid, On the second parameter of an ( ´ m, p)-isometry, Integral Equations Oper. Theory, 71 (2011), 389-405.
- S. A. Mahmoud, On A(m, p)-expansive and A(m, p)-hyperexpansive operators on Banach spaces-II. J. Math. Comput. Sci. 5 (2) (2015), 123-148.
- S. Panayappan, S. K. Latha, it Some isometric composition operators, Int. J. Contemp. Math. Sci. 5 (2010), 615-621.
- S.M. Patel, 2-Isometric operators, Glasnik Mat. 37 (2002), 143-147.
- P., L., Robins, M. Composition operators that are m-isometries, Houston J. Math. 31 (1) (2005), 255-266.
- V. M. Sholapurkar, A. Athavale, Completely and alternatingly hyperexpansive operators, J. Oper. Theory, 43 (2000), 43-68.