Generalized Petrovic's Inequalities for Coordinated Exponentially m-Convex Functions
Main Article Content
Abstract
In this paper, we introduce a new class of convex function, which is called coordinated exponentially m-convex functions. Some new Petrovic's type inequalities for exponentially m-convex functions and coordinated exponentially m-convex functions are derived. Lagrange-type and Cauchy-type mean value theorems for exponentially m-convex and coordinated exponentially m-convex functions are also derived. Several special cases are discussed. We also prove the Lagrange type and Cauchy type mean value theorems for exponentially m-convex and coordinated exponentially m-convex functions. Results proved in this paper may stimulate further research in different areas of pure and applied sciences.
Article Details
References
- M. A. Latif, M. Alomar, On Hadmard-type inequalities for h-convex functions on the co-ordinates, Int. J. Math. Anal. 3(33)(2009), 1645-1656.
- G. Alirezaei, R. Mathar, On Exponentially Concave Functions and Their Impact in Information Theory, in: 2018 Information Theory and Applications Workshop (ITA), IEEE, San Diego, CA, 2018: pp. 1-10.
- T. Antczak, (p, r)-Invex Sets and Functions, J. Math. Anal. Appl. 263 (2001), 355-379.
- M. Avriel, r-convex functions, Math. Program. 2 (1972), 309-323.
- M.U. Awan, M.A. Noor, K.I. Noor, Hermite-Hadamard inequalities for exponentially convex functions, Appl. Math. Inform. Sci. 12(2) (2018), 405-409.
- S.N. Bernstein, Sur les fonctions absolument monotones, Acta Math. 52 (1929), 1-66.
- S. Butt, J. Pecaric, A.U. Rehman, Exponential convexity of Petrovic and related functional, J. Inequal. Appl. 2011 (2011), 89.
- S.S. Dragomir, On Hadamards inequality for convex functions on the co-ordinates in a rectangle from the plane, Taiwan. J. Math. 5(4) (2001), 775-788.
- G. Farid, M. Marwan, A.U. Rehman, New mean value theorems and generalization of Hadamard inequality via coordinated m-convex functions, J. Inequal. Appl. 2015 (2015), 283.
- W. Iqbal, K.M. Awan, A.U. Rehman, G. Farid, An extension of Petrovic's inequality for h-convex (h-concave) functions in plane, Open J. Math. Sci. 3(2019), 398-403.
- V.G. Mihesan, A generalization of the convexity, Seminar on functional equations, approximation and convexity, Cluj-Napoca, Romania, 1993.
- M.A. Noor, Advanced Convex Analysis and Variational Inequalities, Lecture Notes, COMSATS University Islamabad, Islmabad, Pakistan, (2006-2020).
- M.A. Noor, Some new classes of nonconvex functions, Nonlinear Funct. Anal. Appl. 11(1)(2006), 165- 171.
- M.A. Noor, K.I. Noor, Exponentially general convex functions, Transylvanian J. Math. Mech. 11(1-2) (2019), 141-153.
- M.A. Noor, K.I. Noor, On exponentially convex functions, J. Orissa Math. Soc. 38(1-2)(2019), 33-51.
- M.A. Noor, K.I. Noor, New classes of strongly exponentially preinvex functions, AIMS Math. 4(6) (2019), 1554-1568.
- M.A. Noor, K.I. Noor, Strongly exponentially convex functions and their properties, J. Adv. Math. Stud. 12(2) (2019), 177-185.
- M.A. Noor, K.I. Noor, Some properties of exponentially preinvex functions, FACTA Univ. (NIS), 34(5) (2019), 941-955.
- M.A. Noor, K.I. Noor, Strongly exponentially convex functions, U.P.B. Sci. Bull. Ser. A. 81(4) (2019), 75-84.
- M.A. Noor, K.I. Noor, M.U. Awan, Fractional Ostrowski Inequalities for s-Godunova-Levin Functions, Int. J. Anal. Appl. 5(2)(2014), 167-173.
- M.A. Noor, K.I. Noor, M.Th. Rassias, New trends in general variational inequalities, Acta Appl. Math. 170(1) (2020), 986-1046.
- C. Niclulescu, L.E. Persson, Convex functions and Their Applications, Springer, New York, 2018.
- S. Pal, T.K. Wong, On exponentially concave functions and a new information geometry, Ann. Probab. 46(2) (2018), 1070-1113.
- J.E. Pecaric, On the Petrovic's inequality for convex functions, Glasnik Mat. 18(38) (1983), 77-85.
- M. Petrovic's, Sur une fontionnelle, Publ. Math. Univ. Belgrade, 1 (1932), 146-149.
- J. Pecaric, V. Culjak, Inequality of Petrovic and Giaccardi for convex function of higher order, Southeast Asian Bull. Math. 26(1) (2003), 57-61.
- J. Pecaric, J. Peric, Improvements of the Giaccardi and the Petrovic inequality and related Stolarsky type means, Ann. Univ. Craiova, Math. Computer Sci. Ser. 39(1)(2012), 65-75.
- J.E. Pecaric, F. Proschan, Y.L. Tong, Convex functions, partial orderings, and statistical applications, Academic Press, Boston, 1992.
- A.U. Rehman, G. Farid, V.N. Mishra, Generalized convex function and associated Petrovic's inequality, Int. J. Anal. Appl. 17(1)(2019), 122-131.
- A.U. Rehman, G. Farid, W. Iqbal, More About Petrovic's Inequality on Coordinates via m-Convex Functions and Related Results, Kragujevac J. Math. 44(3)(2020), 335-351.
- A.U. Rehman, M. Mudessir, H.T. Fazal, G. Farid, Petrovic's inequality on coordinates and related results, Cogent Math. 3 (2016), 1227298.
- S. Rashid, M. A. Noor, K. I. Noor, F. Safdar, Integral inequalities for generalized preinvex function, Punjab Univ. J. Math. 51(10) (2019), 77-91.
- S. Rashid, M. A. Noor, K. I. Noor, F. Safdar, Fractional exponentially m-convex functions and inequalities, Int. J. Anal. Appl. 17(3)(2019), 464-478.
- G. Toader, Some generalizations of the convexity, In: Proceedings of the Colloquium on Approximation and Optimization, Univ. Cluj-Napoca, Cluj-Napoca, 1985.