Stability Result for a Weakly Nonlinearly Damped Porous System with Distributed Delay

Main Article Content

Khoudir Kibeche
Lamine Bouzettouta
Abdelhak Djebabla
Fahima Hebhoub

Abstract

In this paper, we consider a one-dimensional porous system damped with a single weakly nonlinear feedback and distributed delay term. Without imposing any restrictive growth assumption near the origin on the damping term, we establish an explicit and general decay rate, using a multiplier method and some properties of convex functions in case of the same speed of propagation in the two equations of the system. The result is new and opens more research areas into porous-elastic system.

Article Details

References

  1. F. Ammar-Khodja, A. Benabdallah, J.E. Munoz Rivera, R. Racke, Energy decay for Timoshenko systems of memory type, J. Differ. Equ. 194 (2003), 82–115.
  2. T.A. Apalara, A general decay for a weakly nonlinearly damped porous system, J. Dyn. Control Syst. 25 (2019), 311–322.
  3. T.A. Apalara, General decay of solutions in one-dimensional porous-elastic system with memory, J. Math. Anal. Appl. 469 (2019), 457–471.
  4. L. Bouzettouta, S. Zitouni, Kh. Zennir, and H. Sissaoui, Well-posedness and decay of solutions to Bresse system with internal distributed delay, Int. J. Appl. Math. Stat. 56 (2017), 153–168.
  5. L. Bouzettouta. A. Djebabla, Exponential stabilization of the full von K´arm´an beam by a thermal effect and a frictional damping and distributed delay, J. Math. Phys. 60 (2019), 041506.
  6. L. Bouzettouta, F. Hebhoub, K. Ghennam and S. Benferdi, Exponential stability for a nonlinear Timoshenko system with distributed delay, Int. J. Anal. Appl. 19 (2021), 77-90.
  7. P.S. Casas, R. Quintanilla, Exponential stability in thermoelasticity with microtemperatures, Int. J. Eng. Sci. 43 (2005), 33–47.
  8. A. Haraux, Nonlinear evolution equations–q-global behavior of solutions, Lecture Notes in Mathematics 841. Springer, Berlin, 1981.
  9. D. Ie¸san and R. Quintanilla, On thermoelastic bodies with inner structure and microtemperatures, J. Math. Anal. Appl. 354 (2009), 12–23.
  10. H. E. Khochemane, L. Bouzettouta, A. Guerouah, Exponential decay and well-posedness for a one-dimensional porouselastic system with distributed delay, Appl. Anal. (2019), 1–15. https://doi.org/10.1080/00036811.2019.1703958.
  11. H. E. Khochemane, A. Djebabla, S. Zitouni, L. Bouzettouta, Well-posedness and general decay of a nonlinear damping porous-elastic system with infinite memory, J. Math. Phys. 61 (2020), 021505.
  12. H. E. Khochemane, L. Bouzettouta and S. Zitouni, General decay of a nonlinear damping porous-elastic system with past history. Ann. Univ. Ferrara. 65 (2019), 249–275.
  13. I. Lasiecka, D. Tataru, Uniform boundary stabilization of semilinear wave equations with nonlinear boundary damping. Differ. Integral Equ. 6 (1993), 507–533.
  14. A. Maga˜na and R. Quintanilla, On the exponential decay of solutions in one-dimensional generalized porousthermoelasticity, Asymptotic Anal. 49 (2006), 183–187.
  15. S. A. Messaoudi and M. I. Mustafa, A stability result in a memory-type Timoshenko system, Dyn. Syst. Appl. 18 (2009), 457–468.
  16. S. A. Messaoudi and A. Fareh, Exponential decay for linear damped porous thermoelastic systems with second sound, Discrete Contin. Dyn. Syst. Ser. B 20 (2015), 599–612.
  17. S. Nicaise and C. Pignotti, Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks, SIAM J. Control Optim. 45 (2006), 1561–1585.
  18. P. X. Pamplona, J. E. Mu˜noz Rivera and R. Quintanilla, On the decay of solutions for porous-elastic systems with history, J. Math. Anal. Appl. 379 (2011), 682–705.
  19. A. Soufyane, Energy decay for porous-thermo-elasticity systems of memory type, Appl. Anal. 87 (2008), 451–464.
  20. A. Soufyane, M. Afilal, M. Aouam and M. Chacha, General decay of solutions of a linear one-dimensional porous thermoelasticity system with a boundary control of memory type, Nonlinear Anal., Theory Meth. Appl. 72 (2010), 3903–3910.
  21. A. Soufyane, M. Afilal and M. Chacha, Boundary stabilization of memory type for the porous-thermo-elasticity system, Abstr. Appl. Anal. 2009 (2009), Article ID 280790.
  22. S. Zitouni, L. Bouzettouta, Kh. Zennir and D. Ouchenane, Exponential decay of thermo-elastic Bresse system with distributed delay term, Hacettepe J. Math. Stat. 47 (2018), 1216-1230.