On Mocanu-Type Functions with Generalized Bounded Variations

Main Article Content

Shujaat Ali Shah
Muhammad Afzal Soomro
Asghar Ali Maitlo


The main focus of this article is the study of classes Mµδ(φ,H) and Qµδ(φ,g1,H). We present various inclusion relationships and some applications of our investigations are considered. Also, we include radius problem.

Article Details


  1. S.D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc. 135 (1969), 429-446.
  2. J. Dziok, K.I. Noor, Classes of analytic functions related to a combination of two convex functions, J. Math. Inequal. 11 (2017), 413-427.
  3. W. Janowski, Some extremal problems for certain families of analytic functions I, Ann. Polon. Math. 28 (1973), 297-326.
  4. S. Kanas, A. Wisniowska, Conic regions and k-uniform convexity, J. Comput. Appl. Math. 105 (1999), 327-336.
  5. S. Kanas and A. Wisniowska, Conic domain and starlike functions, Rev. Roumaine Math. Pures Appl. 45 (2000), 647-657.
  6. H.A. Al-Kharsani and A. Sofo, Subordination results on harmonic k-uniformly convex mappings and related classes, Comput. Math. Appl. 59 (2010), 3718-3726.
  7. R.J. Libera, Some classes of regular univalent functions, Proc. Amer. Math. Soc. 16 (1965), 755-758.
  8. S.S. Miller, P.T. Mocanu, Second order differential inequalities in the complex plane, J. Math. Anal. Appl. 65(2) (1978), 289-305.
  9. K.I. Noor, M. Arif, W. Ul-Haq, On k-uniformly close-to-convex functions of complex order, Appl. Math. Comput. 215 (2009), 629-635.
  10. K.I. Noor, Some properties of analytic functions with bounded radius rotations, Compl. Var. Ellipt. Eqn. 54 (2009), 865-877.
  11. K.I. Noor, M.A. Noor, Higher order close-to-convex functions related with conic domains, Appl. Math. Inf. Sci. 8 (2014), 2455-2463.
  12. H. Orhan, E. Deniz D. Raducanu, The Fekete-Szego problem for subclasses of analytic functions de ned by a di erential operator related to conic domains, Comput. Math. Appl. 59 (2010), 283-295.
  13. K.S. Padmanabhan, R. Parvatham, Properties of a class of functions with bounded boundary rotation, Ann. Polon. Math. 31 (1975), 311-323.
  14. B. Pinchuk, Functions with bounded boundary rotation, Israel J. Math. 10 (1971), 7-16.
  15. S. Ruscheweyh, T. Sheil-Small, Hadamard product of Schlicht functions and the Polya-Schoenberg conjecture, Comment. Math. Helv. 48 (1973), 119-135.