Fuzzy Stability of Generalized Square Root Functional Equation in Several Variables: A Fixed Point Approach
Main Article Content
Abstract
In this paper, we investigate the generalized Hyers-Ulam stability of the generalized square root functional equation in several variables in fuzzy Banach spaces, by applying the fixed point method.
Article Details
References
- J. Aczel and J. Dhombres, Functional Equations in Several Variables, Cambridge Univ. Press, 1989.
- T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2 (1950), 64-66.
- C. Baak and M.S. Moslehian, On the stability of J *-homomorphisms, Nonlinear AnalysisTMA 63 (2005), 42-48.
- T. Bag and S.K. Samanta, Finite dimensional fuzzy normed linear spaces, J. Fuzzy Math., 11(3) (2003), 687-705.
- T. Bag and S.K. Samanta, Fuzzy bounded linear operators,, Fuzzy Sets and Syst.,151 (2005), 513-547.
- R. Biswas, Fuzzy inner product spaces and fuzzy norm functions, Inform. Sci., 53 (1991), 185-190.
- L. Cadariu and V. Radu, Fixed points and the stability of Jensen's functional equation, J. Inequal. Pure Appl. Math., 4(1), Art. ID 4 (2003).
- L. Cadariu and V. Radu, On the stability of the Cauchy functional equation: a fixed point approach, Grazer Math. Ber., 346 (2004), 43-52.
- L. Cadariu and V. Radu, Fixed point methods for the generalized stability of functional equations in a single variable, Fixed Point Theory and Appl., 2008, Art. ID 749392 (2008).
- I.S. Chang and H.M. Kim, On the Hyers-Ulam stability of quadratic functional equations, J. Ineq. Appl. Math., 33 (2002), 1-12.
- I.S. Chang and Y.S. Jung, Stability of functional equations deriving from cubic and quadratic functions, J. Math. Anal. Appl., 283 (2003), 491-500.
- S.C. Cheng and J.M. Mordeson, Fuzzy linear operators and fuzzy normed linear spaces, Bull. Calcutta Math. Soc., 86 (1994), 429-436.
- P.W. Cholewa, Remarks on the stability of functional equations, Aequationes Math., 27 (1984), 76-86.
- S. Czerwik, On the stability of the quadratic mappings in normed spaces, Abh. Math. Sem. Univ. Hamburg, 62 (1992), 59-64.
- P. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific Publishing Co. New Jersey, Hong Kong, Singapore and London, 2002.
- J. Diaz and B. Margolis, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc., 74 (1968), 305-309.
- M. Eshaghi Gordji, S. Zolfaghari, J.M. Rassias and M.B. Savadkouhi, Solution and stability of a mixed type cubic and quartic functional equation in quasi-Banach spaces, Abstract and Applied Analysis, Volume 2009, Article ID 417473 (2009), 1-14.
- C. Felbin, Finite dimensional fuzzy normed linear space, Fuzzy Sets and Syst., 48 (1992), 239-248.
- G.L. Forti, Hyers-Ulam stability of functional equations in several variables, Aequationes Math., 50 (1995), 143-190.
- Z. Gajda, On Stability of additive mappings, Int. J. Math. Math. Sci., 14 (1991), 431-434.
- P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), 431-436.
- N. Ghobadipour and C. Park, Cubic-quartic functional equations in fuzzy normed spaces, Int. J. Nonlinear Anal. Appl., 1 (2010), 12-21.
- D.H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A., 27 (1941), 222-224.
- D.H. Hyers, G. Isac and Th.M. Rassias, Stability of Functional Equations in Several Variables, Birkhauser, Basel, 1998.
- G. Isac and Th.M. Rassias, Stability of ψ-additive mappings: Applications to nonlinear analysis, Int. J. Math. Math. Sci., 19 (1996), 219-228.
- A.K. Katsaras, Fuzzy topological vector spaces II, Fuzzy Sets and Syst., 12 (1984), 143-154.
- H. Khodaei and Th.M. Rassias, Approximately generalized additive functions in several variables, Int. J. Nonlinear Anal. Appl., 1 (2010), 22-41.
- I. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetica, 11 (1975), 326-334.
- S.V. Krishna and K.K.M. Sarma, Separation of fuzzy normed linear spaces, Fuzzy Sets and Syst., 63 (1994), 207-217.
- D. Mihet and V. Radu On the stability of the additive Cauchy functional equation in random normed spaces, J. Math. Anal. Appl., 343 (2008), 567-572.
- A.K. Mirmostafaee, M. Mirzavaziri and M.S. Moslehian, Fuzzy stability of the Jensen functional equation, Fuzzy Sets and Syst., 159 (2008), 730-738.
- A.K. Mirmostafaee and M.S. Moslehian, Fuzzy versions of Hyers-Ulam-Rassias Theorem, Fuzzy Sets and Syst., 159 (2008), 720-729.
- A.K. Mirmostafaee and M.S. Moslehian, Fuzzy approximately cubic mappings, Information Sci., 178 (2008), 3791-3798.
- M. Mirzavaziri and M.S. Moslehian, A fixed point approach to stability of a quadratic equation, Bull. Braz. Math. Soc., 37 (2006), 361-376.
- C. Park, Fixed points and Hyers-Ulam-Rassias stability of Cauchy-Jensen functional equations in Banach algebras, Fixed Point Theory and Appl., 2007, Art. ID 50175 (2007).
- C. Park, Generalized Hyers-Ulam-Rassias stability of quadratic functional equations: a fixed point approach, Fixed Point Theory and Appl., 2008, Art. ID 493751 (2008).
- C. Park, Fuzzy stability of a functional equation associated with inner product spaces, Fuzzy sets and Syst., 160 (2009), 1632-1642.
- C. Park, S. Lee and S. Lee, Fuzzy stability of a cubic-quadratic functional equation: A fixed point approach, Korean J. Math., 17(3) (2009), 315-330.
- V. Radu, The fixed point alternative and the stability of functional equations, Fixed Point Theory, 4 (2003), 91-96.
- J.M. Rassias, On approximation of approximately linear mappings by linear mappings, J. Funct. Anal., 46 (1982), 126-130.
- K. Ravi and B.V. Senthil Kumar, Rassias stability of generalized square root functional equation, Int. J. Math. Sci. Engg. Appl., 3(III) (2009), 35-42.
- K. Ravi, J.M. Rassias M. Arunkumar and R. Kodandan, Stability of a generalized mixed type additive, quadratic, cubic and quartic functional equation, J.of Ineq.Pure & Appl. Math., 10 (4) (2009), 1-29.
- Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
- F. Skof, Proprieta locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano 53 (1983), 113-129.
- S.M. Ulam, Problems in Modern Mathematics, Chapter VI, Wiley-Interscience, New York, 1964.
- J.Z. Xiao and X.H. Zhu, Fuzzy normed spaces of operators and its completeness, Fuzzy Sets and Systems, 133 (2003), 389-399.