A Plancherel Theorem On a Noncommutative Hypergroup

Main Article Content

Brou Kouakou Germain
Ibrahima Toure
Kinvi Kangni

Abstract

Let G be a locally compact hypergroup and let K be a compact sub-hypergroup of G. (G, K) is a Gelfand pair if Mc(G//K), the algebra of measures with compact support on the double coset G//K, is commutative for the convolution. In this paper, assuming that (G, K) is a Gelfand pair, we define and study a Fourier transform on G and then establish a Plancherel theorem for the pair (G, K).

Article Details

References

  1. W.R. Bloom, H. Heyer, Harmonic Analysis of Probability Measures on Hypergroups, de Gruyter Studies in Mathematics 20, Walter de Gruyter, Berlin, 1995.
  2. C.F. Dunkl, The Measure Algebra of a Locally Compact Hypergroup, Trans. Amer. Math. Soc. 179 (1973), 331–348. https://doi.org/10.1090/s0002-9947-1973-0320635-2.
  3. B.K. Germain, K. Kinvi, On Gelfand Pair Over Hypergroups, Far East J. Math. 132 (2021), 63–76. https://doi.org/10.17654/ms132010063.
  4. R.I. Jewett, Spaces With an Abstract Convolution of Measures, Adv. Math. 18 (1975), 1–101. https://doi.org/10.1016/0001-8708(75)90002-x.
  5. L. Nachbin, On the Finite Dimensionality of Every Irreducible Unitary Representation of a Compact Group, Proc. Amer. Math. Soc. 12 (1961), 11-12. https://doi.org/10.1090/S0002-9939-1961-0123197-5.
  6. K.A. Ross, Centers of Hypergroups, Trans. Amer. Math. Soc. 243 (1978), 251–269. https://doi.org/10.1090/s0002-9947-1978-0493161-2.
  7. R. Spector, Mesures Invariantes sur les Hypergroupes, Trans. Amer. Math. Soc. 239 (1978), 147–165. https://doi.org/10.1090/s0002-9947-1978-0463806-1.
  8. L. Székelyhidi, Spherical Spectral Synthesis on Hypergroups, Acta Math. Hungar. 163 (2020), 247–275. https://doi.org/10.1007/s10474-020-01068-9.
  9. K. Vati, Gelfand Pairs Over Hypergroup Joins, Acta Math. Hungar. 160 (2019), 101–108. https://doi.org/10.1007/s10474-019-00946-1.