Generalized Stability Additive λ-Functional Inequalities With 3k-Variable in α-Homogeneous F-Spaces
Main Article Content
Abstract
In this paper, we study to solve two additive λ-functional inequalities with 3k-variables in α-homogeneous F spaces. Then we will show that the solutions of the first and second inequalities are additive mappings.
Article Details
References
- T. Aoki, on the Stability of the Linear Transformation in Banach Spaces, J. Math. Soc. Japan. 2 (1950), 64-66. https://doi.org/10.2969/jmsj/00210064.
- L.V. An, Generalized Hyers-Ulam Type Stability of the 2k-Variable Additive β-Functional Inequalities and Equations in Complex Banach Spaces, Int. J. Math. Trends Technol. 66 (2020), 134–147. https://doi.org/10.14445/22315373/IJMTT-V66I7P518.
- A. Bahyrycz, M. Piszczek, Hyers Stability of the Jensen Function Equation, Acta Math. Hungar. 142 (2014), 353-365.
- M. Balcerowski, On the Functional Equations Related to a Problem of Z. Boros and Z. Daróczy, Acta Math Hung. 138 (2013), 329–340. https://doi.org/10.1007/s10474-012-0278-4.
- W. Fechner, Stability of a Functional Inequality Associated With the Jordan-von Neumann Functional Equation, Aequ. Math. 71 (2006), 149–161. https://doi.org/10.1007/s00010-005-2775-9.
- P. Gavruta, A Generalization of the Hyers-Ulam-Rassias Stability of Approximately Additive Mappings, J. Math. Anal. Appl. 184 (1994), 431–436. https://doi.org/10.1006/jmaa.1994.1211.
- A. Gilányi, On a Problem by K. Nikodem, Math. Inequal. Appl. 5 (2002), 707–710. https://doi.org/10.7153/mia-05-71.
- A. Gilányi, Eine zur Parallelogrammgleichung äquivalente Ungleichung, Aequat. Math. 62 (2001), 303–309. https://doi.org/10.1007/PL00000156.
- D.H. Hyers, On the Stability of the Linear Functional Equation, Proc. Natl. Acad. Sci. U.S.A. 27 (1941), 222–224. https://doi.org/10.1073/pnas.27.4.222.
- J.R. Lee, C. Park, D.Y. Shin, Additive and Quadratic Functional in Equalities in Non-Archimedean Normed Spaces, Int. J. Math. Anal. 8 (2014), 1233-1247. https://doi.org/10.12988/ijma.2014.44113.
- H. Lee, J.Y. Cha, M.W. Cho, et al. Additive ρ-Functional Inequalities in β-Homogeneous F-Spaces, J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. 23 (2016), 319–328. https://doi.org/10.7468/JKSMEB.2016.23.3.319.
- L. Maligranda, Tosio Aoki (1910–1989). In: Proceedings of the International Symposium on Banach and Function Spaces II Kitakyushu, Japan, pp. 1–23 (2006).
- C. Park, Y.S. Cho, M.-H. Han, Functional Inequalities Associated with Jordan-von Neumann-Type Additive Functional Equations, J. Inequal. Appl. 2007 (2007), 41820. https://doi.org/10.1155/2007/41820.
- W. Prager, J. Schwaiger, A System of Two Inhomogeneous Linear Functional Equations, Acta Math. Hung. 140 (2013), 377–406. https://doi.org/10.1007/s10474-013-0315-y.
- C. Park, Functional Inequalities in Non-Archimedean Normed Spaces, Acta. Math. Sin.-English Ser. 31 (2015), 353–366. https://doi.org/10.1007/s10114-015-4278-5.
- J. Rätz, On Inequalities Associated With the Jordan-Von Neumann Functional Equation, Aequat. Math. 66 (2003), 191–200. https://doi.org/10.1007/s00010-003-2684-8.
- S. Rolewicz, Metric Linear Spaces, PWN-Polish Scientific Publishers, Warsaw, 1972.
- T.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297–300. https://doi.org/10.1090/S0002-9939-1978-0507327-1.
- S.M. ULam, A Collection of Mathematical Problems, Volume 8, Interscience Publishers, New York, 1960.