Frictional Contact Problem With Wear for Thermo-Viscoelastic Materials With Damage

Main Article Content

Safa Gherian, Abdelaziz Azeb Ahmed, Fares Yazid, Fatima Siham Djeradi

Abstract

We consider a mathematical model which describes a dynamic frictional contact problem for thermo-viscoelastic materials with long memory and damage. The contact is modeled by the normal compliance condition and wear between surfaces are taken into account. We establish a variational formulation for the model and prove the existence and uniqueness of the weak solution. The proof is based on arguments of hyperbolic nonlinear differential equations, parabolic variational inequalities and Banach fixed point.

Article Details

References

  1. L.E. Andersson, A Quasistatic Frictional Problem With Normal Compliance, Nonlinear Anal.: Theory Methods Appl. 16 (1991), 347–369. https://doi.org/10.1016/0362-546X(91)90035-Y.
  2. K.T. Andrews, M. Shillor, S. Wright, A. Klarbring, A Dynamic Thermoviscoelastic Contact Problem With Friction and Wear, Int. J. Eng. Sci. 35 (1997), 1291–1309. https://doi.org/10.1016/S0020-7225(97)87426-5.
  3. K.T. Andrews, K.L. Kuttler, M. Shillor, On the Dynamic Behaviour of a Thermoviscoelastic Body in Frictional Contact With a Rigid Obstacle, Eur. J. Appl. Math. 8 (1997), 417–436. https://doi.org/10.1017/S0956792597003173.
  4. V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Springer, Dordrecht, 1976.
  5. M. Bouallala, E.H. Essoufi, Analysis Results for Dynamic Contact Problem With Friction in Thermo-Viscoelasticity, Methods Funct. Anal. Topol. 26 (2020), 317–326. https://doi.org/10.31392/mfat-npu26_4.2020.03.
  6. I. Boukaroura, S. Djabi, Analysis of a Quasistatic Contact Problem With Wear and Damage for Thermo-Viscoelastic Materials, Malaya J. Mat. 06 (2018), 299–309. https://doi.org/10.26637/mjm0602/0001.
  7. O. Chau, A. Petrov, A. Heibig, M.M. Marques, A Frictional Dynamic Thermal Contact Problem with Normal Compliance and Damage, in: T.M. Rassias, P.M. Pardalos (Eds.), Nonlinear Analysis and Global Optimization, Springer International Publishing, Cham, 2021: pp. 71–107. https://doi.org/10.1007/978-3-030-61732-5_4.
  8. J. Chen, W. Han, M. Sofonea, Numerical Analysis of a Quasistatic Problem of Sliding Frictional Contact With Wear, Methods Appl. Anal. 7 (2000), 687–704. https://doi.org/10.4310/MAA.2000.v7.n4.a5.
  9. C. Ciulcu, T.V. Hoarau-Mante, M. Sofonea, Viscoelastic Sliding Contact Problems With Wear, Math. Computer Model. 36 (2002), 861–874. https://doi.org/10.1016/S0895-7177(02)00233-9.
  10. L. Chouchane, L. Selmani, A History-Dependent Frictional Contact Problem With Wear for Thermoviscoelastic Materials, Math. Model. Anal. 24 (2019), 351–371. https://doi.org/10.3846/mma.2019.022.
  11. A. Djabi, A. Merouani, Bilateral Contact Problem With Friction and Wear for an Electro Elastic-Viscoplastic Materials With Damage, Taiwan. J. Math. 19 (2015), 1161-1182. https://doi.org/10.11650/tjm.19.2015.5453.
  12. J.R. Fernández, M. Sofonea, Variational and Numerical Analysis of the Signorini’s Contact Problem in Viscoplasticity With Damage, J. Appl. Math. 2003 (2003), 87–114. https://doi.org/10.1155/S1110757X03202023.
  13. L. Gasiński, A. Ochal, Dynamic Thermoviscoelastic Problem With Friction and Damage, Nonlinear Anal.: Real World Appl. 21 (2015), 63–75. https://doi.org/10.1016/j.nonrwa.2014.06.004.
  14. L. Johansson, A. Klarbring, Thermoelastic Frictional Contact Problems: Modelling, Finite Element Approximation and Numerical Realization, Computer Methods Appl. Mech. Eng. 105 (1993), 181–210. https://doi.org/10.1016/0045-7825(93)90122-E.
  15. O. Kavian, Introduction à la Théorie des Points Critiques et Applications aux Équations Elliptiques, Springer, Berlin, 1993.
  16. A. Klarbring, A. Mikelić, M. Shillor, A Global Existence Result for the Quasistatic Frictional Contact Problem with Normal Compliance, in: G. Del Piero, F. Maceri (Eds.), Unilateral Problems in Structural Analysis IV, Birkhäuser Basel, Basel, 1991: pp. 85–111. https://doi.org/10.1007/978-3-0348-7303-1_8.
  17. J.A.C. Martins, J.T. Oden, Existence and Uniqueness Results for Dynamic Contact Problems With Nonlinear Normal and Friction Interface Laws, Nonlinear Anal.: Theory Methods Appl. 11 (1987), 407–428. https://doi.org/10.1016/0362-546X(87)90055-1.
  18. M.S. Mesai Aoun, M. Selmani, A.A. Ahmed, Variational Analysis of a Frictional Contact Problem With Wear and Damage, Math. Model. Anal. 26 (2021), 170–187. https://doi.org/10.3846/mma.2021.11942.
  19. K. Rimi, T.H. Ammar, Variational Analysis of an Electro-Elasto-Viscoplastic Contact Problem With Friction and Wear, Commun. Math. Appl. 12 (2021), 145–159. https://doi.org/10.26713/cma.v12i1.1461.
  20. M. Selmani, Frictional Contact Problem With Wear for Electro-Viscoelastic Materials With Long Memory, Bull. Belg. Math. Soc. Simon Stevin. 20 (2013), 461-479. https://doi.org/10.36045/bbms/1378314510.
  21. M. Shillor, M. Sofonea, J.J. Telega, Quasistatic Viscoelastic Contact With Friction and Wear Diffusion, Quart. Appl. Math. 62 (2004), 379–399. https://doi.org/10.1090/qam/2054605.
  22. M. Sofonea, W. Han, M. Shillor, Analysis and Approximation of Contact Problems With Adhesion or Damage. Pure and Applied Mathematics 276. Chapman-Hall/CRC Press, New York 2006. http://doi.org/10.1201/9781420034837.
  23. N. Stromberg, Continuum Thermodynamics of Contact, Friction and Wear. Ph.D. Thesis, Linkoping University, Sweeden, 1995.
  24. N. Strömberg, L. Johansson, A. Klarbring, Derivation and Analysis of a Generalized Standard Model for Contact, Friction and Wear, Int. J. Solids Struct. 33 (1996), 1817–1836. https://doi.org/10.1016/0020-7683(95)00140-9.