Title: Fractional Ostrowski Inequalities for s-Godunova-Levin Functions
Author(s): Muhammad Aslam Noor, Khalida Inayat Noor, Muhammad Uzair Awan
Pages: 167-173
Cite as:
Muhammad Aslam Noor, Khalida Inayat Noor, Muhammad Uzair Awan, Fractional Ostrowski Inequalities for s-Godunova-Levin Functions, Int. J. Anal. Appl., 5 (2) (2014), 167-173.


In this paper, we derive some new fractional Ostrowski type inequalities for s-Godunova-Levin functions introduced by Dragomir [3, 4]. Some special cases are also discussed.

Full Text: PDF



  1. G. Cristescu, L. Lupsa, Non-connected Convexities and Applications, Kluwer Academic Publishers, Dordrecht, Holland, 2002.

  2. G. Cristescu, M. A. Noor, M. U. Awan, Bounds of the second degree cumulative frontier gaps of functions with generalized convexity, Carpath. J. Math. 30(2), 2014.

  3. S. S. Dragomir, Inequalities of Hermite-Hadamard type for h-convex functions on linear spaces, preprint.

  4. S. S. Dragomir, n-points inequalities of Hermite-Hadamard type for h-convex functions on linear spaces, preprint.

  5. S. S. Dragomir, R. P. Agarwal, P. Cerone, On Simpsons Inequality and Applications, J. Inequal. Appl., 5, 533-579, 2000.

  6. S. S. Dragomir, J. Peˇcari´c and L. E. Persson, Some inequalities of Hadamard type, Soochow J. Math, 21 (1995), 335-341.

  7. S. S. Dragomir, C. E. M. Pearce, Selected topics on Hermite-Hadamard inequalities and applications, Victoria University, Australia 2000.

  8. S. S. Dragomir, T. M. Rassias, Ostrowski Type Inequalities and Applications in Numerical Integration, Springer Netherlands, 2002.

  9. E. K. Godunova and V. I. Levin, Inequalities for functions of a broad class that contains convex, monotone and some other forms of functions. (Russian) Numerical mathematics and mathematical physics (Russian), 138-142, 166, Moskov. Gos. Ped. Inst., Moscow, 1985.

  10. U. N. Katugampola, New approach to a generalized fractional integral, Appl. Math. Comput. 218(3), 860-865 (2011).

  11. A. Kilbas , H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier B.V., Amsterdam, Netherlands, (2006).

  12. W. Liu, J. Park, A generalization of the companion of Ostrowski-like inequality and applications, Appl. Math. Inf. Sci. 7(1), 273-278 (2013).

  13. D. S. Mitrinovic, J. Pecaric, Note on a class of functions of Godunova and Levin, C. R. Math. Rep. Acad. Sci. Can. 12, 33-36, (1990).

  14. M. A. Noor, M. U. Awan, Some Integral inequalities for two kinds of convexities via fractional integrals, Trans. J. Math. Mech., 5(2), (2013).

  15. M. A. Noor, K. I. Noor, M. U. Awan, Geometrically relative convex functions, Appl. Math. Infor. Sci. 8(2), 607-616, (2014).

  16. M. A. Noor, K. I. Noor, M. U. Awan, S. Khan, Fractional Hermite-Hadamard Inequalities for some new classes of Godunova-Levin functions, Appl. Math. Infor. Sci. (2014/15), inpress.

  17. M. A. Noor, K. I. Noor, M. U. Awan, J. Li, On Hermite-Hadamard Inequalities for h-preinvex functions, Filomat, (2014), inpress.

  18. M. A. Noor, F. Qi, M. U. Awan, Some HermiteHadamard type inequalities for log −h-convex functions, Analysis, 33, 367?75, (2013).

  19. A. Ostrowski, Uber die Absolutabweichung einer differentienbaren Funktionen von ihren Integralmittelwert, Comment. Math. Hel, 10 (1938), 226-227.

  20. M. Radulescu. S. Radulescu, P. Alexandrescu, On the Godunova-Levin-Schur class of functions, Math. Inequal. Appl. 12(4), 853-862, (2009).

  21. M. Z. Sarikaya, E. Set, H. Yaldiz and N. Basak, Hermite-Hadamard’s inequalities for fractional integrals and related fractional inequalities, Mathematical and Computer Modelling 57 (2013), 2403-2407.

  22. E. Set, New inequalities of Ostrowski type for mappings whose derivatives are s-convex in the second sense via fractional integrals, Comput. Math. Appl. 63 (2012), no. 7, 1147?154.

  23. M. Tunc, Ostrowski-type inequalities via h-convex functions with applications to speial means, J. Ineq. Appl. 2013,2013:326, doi:10.1186/1029-242X-2013-326.

  24. Y Wang, S.-H Wang, F. Qi, Simpson type integral inequalities in which the power of the absolute value of the first derivative of the integrand is s-preinvex, Acta Universities (NIS) Ser. Math. Inform. 28, 1-9, (2013).

  25. B.-Y Xi, F. Qi, Integral inequalities of simpson type for logarithmically convex functions, To appear in Advanced Studies in Contemporary Mathematics.