##### Title: Convergence to Common Fixed Point for Nearly Asymptotically Nonexpansive Mappings in Banach Spaces

##### Pages: 89-96

##### Cite as:

G. S. Saluja, Convergence to Common Fixed Point for Nearly Asymptotically Nonexpansive Mappings in Banach Spaces, Int. J. Anal. Appl., 6 (1) (2014), 89-96.#### Abstract

The purpose of this paper is to study modified S-iteration process to converge to common fixed point for two nearly asymptotically nonexpansive mappings in the framework of Banach spaces. Also we establish some strong convergence theorems and a weak convergence theorem for said mappings and iteration scheme under appropriate conditions.

##### Full Text: PDF

#### References

- R.P. Agarwal, Donal O’Regan and D.R. Sahu, Iterative construction of fixed points of nearly asymptotically nonexpansive mappings, Nonlinear Convex Anal. 8(1)(2007), 61-79.
- F.E. Browder, Nonlinear operators and nonlinear equations of evolution, Proc. Amer. Math. Symp. Pure Math. XVII, Amer. Math. Soc., Providence, 1976.
- C.E. Chidume and B. Ali, Weak and strong convergence theorems for finite families of asymptotically nonexpansive mappings in Banach spaces, J. Math. Anal. Appl. 330(2007), 377-387.
- K. Goebel and W.A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 35(1)(1972), 171-174.
- J. Gornicki, Weak convergence theorems for asymptotically mappings in uniformly convex Banach spaces, Comment. Math. Univ. Carolinae 30(1989), 249-252.
- J.S. Jung, D.R. Sahu and B.S. Thakur, Strong convergence theorems for asymptotically nonexpansive mappings in Banach spaces, Comm. Appl. Nonlinear Anal. 5(1998), 53-69.
- J.S. Jung and D.R. Sahu, Fixed point theorem for non-Lipschitzian semigroups without convexity, Indian J. Math. 40(2)(1998), 169-176.
- S.H. Khan and W. Takahashi, Approximating common fixed points of two asymptotically nonexpansive mappings, Sci. Math. Jpn. 53(1)(2001), 143-148.
- W.A. Kirk, A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly 72(1965), 1004-1006.
- W.A. Kirk, Fixed point theorem for non-Lipschitzian mappings of asymptotically nonexpansive type, Israel J. Math. 17(1974), 339-346.
- W.A. Kirk, C. Martinez Yanez and S.S. Kim, Asymptotically nonexpansive mappings, Nonlinear Anal. 33(1998), 1345-1365.
- T.C. Lim and H. Xu, Fixed point theorems for mappings of asymptotically nonexpansive mappings, Nonlinear Anal. 22(1994), 1345-1355.
- Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73(1967), 591-597.
- M.O. Osilike and S.C. Aniagbosor, Weak and strong convergence theorems for fixed points of asymptotically nonexpansive mappings, Math. and Computer Modelling 32(2000), 1181-1191.
- B.E. Rhoades, Fixed point iteration for certain nonlinear mappings, J. Math. Anal. Appl. 183(1994), 118-120.
- D.R. Sahu, Fixed points of demicontinuous nearly Lipschitzian mappings in Banach spaces, Comment. Math. Univ. Carolinae 46(4)(2005), 653-666.
- J. Schu, Weak and strong convergence to fixed points of asymptotically nonexpansive mappings, Bull. Austral. Math. Soc. 43(1)(1991), 153-159.
- J. Schu, Iterative construction of fixed points of asymptotically nonexpansive mappings, J. Math. Anal. Appl. 158(1991), 407-413.
- K.K. Tan and H.K. Xu, The nonlinear ergodic theorem for asymptotically nonexpansive mappings in Banach space, Proc. Amer. Math. Soc. 114(1992), 399-404.
- K.K. Tan and H.K. Xu, Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process, J. Math. Anal. Appl. 178(1993), 301-308.
- H.K. Xu, Existence and convergence for fixed points for mappings of asymptotically nonexpansive type, Nonlinear Anal. 16(1991), 1139-1146.