Title: Convergence to Common Fixed Point for Nearly Asymptotically Nonexpansive Mappings in Banach Spaces
Author(s): G. S. Saluja
Pages: 89-96
Cite as:
G. S. Saluja, Convergence to Common Fixed Point for Nearly Asymptotically Nonexpansive Mappings in Banach Spaces, Int. J. Anal. Appl., 6 (1) (2014), 89-96.

Abstract


The purpose of this paper is to study modified S-iteration process to converge to common fixed point for two nearly asymptotically nonexpansive mappings in the framework of Banach spaces. Also we establish some strong convergence theorems and a weak convergence theorem for said mappings and iteration scheme under appropriate conditions.

Full Text: PDF

 

References


  1. R.P. Agarwal, Donal O’Regan and D.R. Sahu, Iterative construction of fixed points of nearly asymptotically nonexpansive mappings, Nonlinear Convex Anal. 8(1)(2007), 61-79.

  2. F.E. Browder, Nonlinear operators and nonlinear equations of evolution, Proc. Amer. Math. Symp. Pure Math. XVII, Amer. Math. Soc., Providence, 1976.

  3. C.E. Chidume and B. Ali, Weak and strong convergence theorems for finite families of asymptotically nonexpansive mappings in Banach spaces, J. Math. Anal. Appl. 330(2007), 377-387.

  4. K. Goebel and W.A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 35(1)(1972), 171-174.

  5. J. Gornicki, Weak convergence theorems for asymptotically mappings in uniformly convex Banach spaces, Comment. Math. Univ. Carolinae 30(1989), 249-252.

  6. J.S. Jung, D.R. Sahu and B.S. Thakur, Strong convergence theorems for asymptotically nonexpansive mappings in Banach spaces, Comm. Appl. Nonlinear Anal. 5(1998), 53-69.

  7. J.S. Jung and D.R. Sahu, Fixed point theorem for non-Lipschitzian semigroups without convexity, Indian J. Math. 40(2)(1998), 169-176.

  8. S.H. Khan and W. Takahashi, Approximating common fixed points of two asymptotically nonexpansive mappings, Sci. Math. Jpn. 53(1)(2001), 143-148.

  9. W.A. Kirk, A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly 72(1965), 1004-1006.

  10. W.A. Kirk, Fixed point theorem for non-Lipschitzian mappings of asymptotically nonexpansive type, Israel J. Math. 17(1974), 339-346.

  11. W.A. Kirk, C. Martinez Yanez and S.S. Kim, Asymptotically nonexpansive mappings, Nonlinear Anal. 33(1998), 1345-1365.

  12. T.C. Lim and H. Xu, Fixed point theorems for mappings of asymptotically nonexpansive mappings, Nonlinear Anal. 22(1994), 1345-1355.

  13. Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73(1967), 591-597.

  14. M.O. Osilike and S.C. Aniagbosor, Weak and strong convergence theorems for fixed points of asymptotically nonexpansive mappings, Math. and Computer Modelling 32(2000), 1181-1191.

  15. B.E. Rhoades, Fixed point iteration for certain nonlinear mappings, J. Math. Anal. Appl. 183(1994), 118-120.

  16. D.R. Sahu, Fixed points of demicontinuous nearly Lipschitzian mappings in Banach spaces, Comment. Math. Univ. Carolinae 46(4)(2005), 653-666.

  17. J. Schu, Weak and strong convergence to fixed points of asymptotically nonexpansive mappings, Bull. Austral. Math. Soc. 43(1)(1991), 153-159.

  18. J. Schu, Iterative construction of fixed points of asymptotically nonexpansive mappings, J. Math. Anal. Appl. 158(1991), 407-413.

  19. K.K. Tan and H.K. Xu, The nonlinear ergodic theorem for asymptotically nonexpansive mappings in Banach space, Proc. Amer. Math. Soc. 114(1992), 399-404.

  20. K.K. Tan and H.K. Xu, Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process, J. Math. Anal. Appl. 178(1993), 301-308.

  21. H.K. Xu, Existence and convergence for fixed points for mappings of asymptotically nonexpansive type, Nonlinear Anal. 16(1991), 1139-1146.