Title: Bounds of Certain Dynamic Inequalities on Time Scales
Author(s): Deepak B. Pachpatte
Pages: 164-169
Cite as:
Deepak B. Pachpatte, Bounds of Certain Dynamic Inequalities on Time Scales, Int. J. Anal. Appl., 6 (2) (2014), 164-169.

Abstract


In this paper we study explicit bounds of certain dynamic integral inequalities on time scales. These estimates give the bounds on unknown functions which can be used in studying the qualitative aspects of certain dynamic equations. Using these inequalities we prove the uniqueness of some partial integro-differential equations on time scales.

Full Text: PDF

 

References


  1. S. Andras and A. Meszaros, Wendroff Type inequalities on time scales via Picard Operators, Math. Inequal. Appl.,17,1(2013),159-174. Google Scholar

  2. M. Bohner and A. Peterson, Dynamic equations on time scales, Birkhauser Boston/Berlin, (2001). Google Scholar

  3. M. Bohner and A. Peterson, Advances in Dynamic equations on time scales, Birkhauser Boston/Berlin, (2003). Google Scholar

  4. S. Hilger, Analysis on Measure chain-A unified approch to continuous and discrete calculus, Results. Math., 18:18-56, 1990. Google Scholar

  5. W. N. Li, Some Pachpatte type inequalities on time scales, Comput. Math. Appl. Vol. 57, Iss. 2, 2009, P.275-282 Google Scholar

  6. L. Li, M. Han, Some new dynamic Opial type inequalities and applications for second order integro-differential dynamic equations on time scales, Appl. Math. Comput.,Vol. 232, 2014, P. 542-547 Google Scholar

  7. F. Meng, J. Shao, Some new Volterra Fredholm type dynamic integral inequalities on time scales, Appl. Math. Comput., Vol. 223, 2013, P. 444-451. Google Scholar

  8. D. B. Pachpatte, Explicit estimates on integral inequalities with time scale, J. Inequal. Pure. Appl. Math., Vol. 7, Issue 4, Artivle 143, 2006. Google Scholar

  9. D. B. Pachpatte, Integral Inequalitys for partial dynamic equations on time scales, Electron. J. Differential Equations,Vol. 2012 (2012), No. 50, 1C7. Google Scholar

  10. D. B. Pachpatte, Properties of solutions to nonlinear dynamic integral equations on Time Scales, Electron. J. Differential Equations,Vol. 2008(2008). No. 130. pp.1-8. Google Scholar

  11. S.H. Saker, Applications of Opial inequalities on time scales on dynamic equations with damping terms, Math. Comput. Modelling, Vol. 58, Iss. 11?12, 2013, P.1777-1790 Google Scholar

  12. Y. Sun, T. Hassan, Some nonlinear dynamic integral inequalities on time scales, Appl. Math. Comput., Vol 220, 2013, P. 221-225. Google Scholar

  13. A. Tuna, S. Kutukcu, Some integral inequalities on time scales, Appl. Math. Mech. 2008, 29(1):23-29. Google Scholar

  14. L. Yin and F. Qi, Some Integral Inequalities on Time Scales, Results. Math. 64 (2013), 371-381. Google Scholar