Title: Analysis of Discrete Mittag - Leffler Functions
Author(s): N. Shobanadevi, J. Jagan Mohan
Pages: 129-144
Cite as:
N. Shobanadevi, J. Jagan Mohan, Analysis of Discrete Mittag - Leffler Functions, Int. J. Anal. Appl., 7 (2) (2015), 129-144.

Abstract


Discrete Mittag - Leffler functions play a major role in the development of the theory of discrete fractional calculus. In the present article, we analyze qualitative properties of discrete Mittag - Leffler functions and establish sufficient conditions for convergence, oscillation and summability of the infinite series associated with discrete Mittag - Leffler functions.

Full Text: PDF

 

References


  1. Agarwal, R.P., A propos d’une note de M.Pierre Humbert, C. R. Acad. Sci., 236 (1953), 2031 - 2032. Google Scholar

  2. Atsushi Nagai, Discrete Mittag - Leffler function and its applications, Publ. Res. Inst. Math. Sci., Kyoto Univ., 1302 (2003), 1 - 20. Google Scholar

  3. Bromwich, T.J., An Introduction to the Theory of Infinite Series, MacMillan, London, 1908. Google Scholar

  4. Butterworth, I.B., Infinite oscillation of alternating series, The Mathematical Gazette, 34 (1950), Number 310, 298 - 300. Google Scholar

  5. Elaydi, S., An Introduction to Difference Equations, Undergraduate Texts in Mathematics, 3rd Edition, Springer, New York, 2005. Google Scholar

  6. Ferhan M.Atici and Paul W.Eloe, Discrete fractional calculus with the nabla operator, Electron. J. Qual. Theory Differ. Equat., Special Edition I (2009), Number 13, 12 Pages (Electronic). Google Scholar

  7. Ferhan M.Atici and Paul W.Eloe, Gronwall’s inequality on discrete fractional calculus, Computers and Mathematics with Applications, 64 (2012), 3193 - 3200. Google Scholar

  8. Ferhan M.Atici and Paul W.Eloe, Linear systems of nabla fractional difference equations, Rocky Mountain Journal of Mathematics, 41 (2011), Number 2, 353 - 370. Google Scholar

  9. George A.Anastassiou, Nabla discrete fractional calculus and nabla inequalities, Mathematical and Computer Modelling, 51 (2010), 562 - 571. Google Scholar

  10. Gray, H.L. and Zhang, N.F., On a new definition of the fractional difference, Mathematics of Computaion, 50 (1988), Number 182, 513 - 529. Google Scholar

  11. Hardy, G.H., Divergent Series, Oxford Press, London, 1949. Google Scholar

  12. Hein, J., Mc Carthy, S., Gaswick, N., Mc Kain, B. and Spear, K., Laplace transforms for the nabla difference operator, Pan American Mathematical Journal, 21 (2011), Number 3, 79 - 96. Google Scholar

  13. Jagan Mohan, J. and Deekshitulu, G.V.S.R., Solutions of nabla fractional difference equations using N - transforms, Commun. Math. Stat., 2 (2014), 1 - 16. Google Scholar

  14. Jagan Mohan, J., Deekshitulu, G.V.S.R. and Shobanadevi, N., Stability of nonlinear nabla fractional difference equations using fixed point theorems, Italian Journal of Pure and Applied Mathematics, 32 (2014), 165 - 184. Google Scholar

  15. Jagan Mohan, J. and Shobanadevi, N., Stability of linear nabla fractional difference equations, Proceedings of the Jangjeon Mathematical Society, 17 (2014), Number 4, 651 - 657. Google Scholar

  16. Jagan Mohan, J., Variation of parameters for nabla fractional difference equations, Novi Sad J. Math., 44 (2014), Number 2, 149 - 159. Google Scholar

  17. Jagan Mohan Jonnalagadda, Solutions of perturbed linear nabla fractional difference equations, Differential Equations and Dynamical Systems, 22 (2014), Number 3, 281 - 292. Google Scholar

  18. James M.Hylop, Infinite Series, Interscience Publishers, London, 1959. Google Scholar

  19. Jan Cermak, Tomas Kisela and Ludek Nechvatal, Stability and asymptotic properties of a linear fractional difference equation, Advances in Difference Equations 2012 (2012), Article ID 122. Google Scholar

  20. Lloyd Leroy Smail, Some generalizations in the theory of summable divergent series, Dissertation, Columbia University, 1913. Google Scholar

  21. Miller, K.S. and Ross, B., Fractional difference calculus, Proceedings of the International Symposium on Univalent Functions, Fractional Calculus and Their Applications, 139 - 152, Nihon University, Koriyama, Japan, 1989. Google Scholar

  22. Mittag - Leffler, G.M., Sur la nouvelle fonction Eα(x), C. R. Acad. Sci. Paris, 137 (1903), 554 - 558. Google Scholar

  23. Nihan Acar, Ferhan M.Atici, Exponential functions of discrete fractional calculus, Applicable Analysis and Discrete Mathematics, 7 (2013), 343 - 353. Google Scholar

  24. Podlubny, I., Fractional Differential Equations, Academic Press, San Diego, 1999. Google Scholar

  25. Thabet Abdeljawad, Fahd Jarad and Dumitru Baleanu, A semigroup like property for discrete Mittag - Leffler functions, Advances in Difference Equations, 2012 (2012), Article ID 72. Google Scholar

  26. Thabet Abdeljawad and Ferhan M.Atici, On the definitions of nabla fractional operators, Abstract and Applied Analysis, 2012 (2012), Article ID 406757. Google Scholar