Analysis of Discrete Mittag - Leffler Functions
Main Article Content
Abstract
Discrete Mittag - Leffler functions play a major role in the development of the theory of discrete fractional calculus. In the present article, we analyze qualitative properties of discrete Mittag - Leffler functions and establish sufficient conditions for convergence, oscillation and summability of the infinite series associated with discrete Mittag - Leffler functions.
Article Details
References
- Agarwal, R.P., A propos d'une note de M.Pierre Humbert, C. R. Acad. Sci., 236 (1953), 2031 - 2032.
- Atsushi Nagai, Discrete Mittag - Leffler function and its applications, Publ. Res. Inst. Math. Sci., Kyoto Univ., 1302 (2003), 1 - 20.
- Bromwich, T.J., An Introduction to the Theory of Infinite Series, MacMillan, London, 1908.
- Butterworth, I.B., Infinite oscillation of alternating series, The Mathematical Gazette, 34 (1950), Number 310, 298 - 300.
- Elaydi, S., An Introduction to Difference Equations, Undergraduate Texts in Mathematics, 3rd Edition, Springer, New York, 2005.
- Ferhan M.Atici and Paul W.Eloe, Discrete fractional calculus with the nabla operator, Electron. J. Qual. Theory Differ. Equat., Special Edition I (2009), Number 13, 12 Pages (Electronic).
- Ferhan M.Atici and Paul W.Eloe, Gronwall's inequality on discrete fractional calculus, Computers and Mathematics with Applications, 64 (2012), 3193 - 3200.
- Ferhan M.Atici and Paul W.Eloe, Linear systems of nabla fractional difference equations, Rocky Mountain Journal of Mathematics, 41 (2011), Number 2, 353 - 370.
- George A.Anastassiou, Nabla discrete fractional calculus and nabla inequalities, Mathematical and Computer Modelling, 51 (2010), 562 - 571.
- Gray, H.L. and Zhang, N.F., On a new definition of the fractional difference, Mathematics of Computaion, 50 (1988), Number 182, 513 - 529.
- Hardy, G.H., Divergent Series, Oxford Press, London, 1949.
- Hein, J., Mc Carthy, S., Gaswick, N., Mc Kain, B. and Spear, K., Laplace transforms for the nabla difference operator, Pan American Mathematical Journal, 21 (2011), Number 3, 79 - 96.
- Jagan Mohan, J. and Deekshitulu, G.V.S.R., Solutions of nabla fractional difference equations using N - transforms, Commun. Math. Stat., 2 (2014), 1 - 16.
- Jagan Mohan, J., Deekshitulu, G.V.S.R. and Shobanadevi, N., Stability of nonlinear nabla fractional difference equations using fixed point theorems, Italian Journal of Pure and Applied Mathematics, 32 (2014), 165 - 184.
- Jagan Mohan, J. and Shobanadevi, N., Stability of linear nabla fractional difference equations, Proceedings of the Jangjeon Mathematical Society, 17 (2014), Number 4, 651 - 657.
- Jagan Mohan, J., Variation of parameters for nabla fractional difference equations, Novi Sad J. Math., 44 (2014), Number 2, 149 - 159.
- Jagan Mohan Jonnalagadda, Solutions of perturbed linear nabla fractional difference equations, Differential Equations and Dynamical Systems, 22 (2014), Number 3, 281 - 292.
- James M.Hylop, Infinite Series, Interscience Publishers, London, 1959.
- Jan Cermak, Tomas Kisela and Ludek Nechvatal, Stability and asymptotic properties of a linear fractional difference equation, Advances in Difference Equations 2012 (2012), Article ID 122.
- Lloyd Leroy Smail, Some generalizations in the theory of summable divergent series, Dissertation, Columbia University, 1913.
- Miller, K.S. and Ross, B., Fractional difference calculus, Proceedings of the International Symposium on Univalent Functions, Fractional Calculus and Their Applications, 139 - 152, Nihon University, Koriyama, Japan, 1989.
- Mittag - Leffler, G.M., Sur la nouvelle fonction Eα(x), C. R. Acad. Sci. Paris, 137 (1903), 554 - 558.
- Nihan Acar, Ferhan M.Atici, Exponential functions of discrete fractional calculus, Applicable Analysis and Discrete Mathematics, 7 (2013), 343 - 353.
- Podlubny, I., Fractional Differential Equations, Academic Press, San Diego, 1999.
- Thabet Abdeljawad, Fahd Jarad and Dumitru Baleanu, A semigroup like property for discrete Mittag - Leffler functions, Advances in Difference Equations, 2012 (2012), Article ID 72.
- Thabet Abdeljawad and Ferhan M.Atici, On the definitions of nabla fractional operators, Abstract and Applied Analysis, 2012 (2012), Article ID 406757.