Title: Smoothness to the Boundary of Biholomorphic Mappings
Author(s): Steven G. Krantz
Pages: 1-14
Cite as:
Steven G. Krantz, Smoothness to the Boundary of Biholomorphic Mappings, Int. J. Anal. Appl., 8 (1) (2015), 1-14.

Abstract


Under a plausible geometric hypothesis, we show that a biholomorphic mappingof smoothly bounded, pseudoconvex domains extends to a diffeomorphism of the closures.

Full Text: PDF

 

References


  1. R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975.

  2. S. R. Bell, Biholomorphic mappings and the ∂ problem, Ann. Math., 114(1981), 103-113.

  3. S. R. Bell, Local boundary behavior of proper holomorphic mappings, Complex Analysis of Several Variables (Madison, Wis., 1982), 1–7, Proc. Sympos. Pure Math., 41, Amer. Math. Soc., Providence, RI, 1984.

  4. S. R. Bell and E. Ligocka, A simplification and extension of Fefferman’s theorem on biholomorphic mappings, Invent. Math. 57(1980), 283–289.

  5. R. B. Burckel, An Introduction to Classical Complex Analysis, Academic Press, New York, 1979.

  6. K. Diederich and J. E. Fornæss, Pseudoconvex domains: Bounded strictly plurisubharmonic exhaustion functions, Invent. Math. 39(1977), 129–141.

  7. C. Fefferman, The Bergman kernel and biholomorphic mappings of pseudoconvex domains, Invent. Math. 26(1974), 1–65.

  8. G. B. Folland and J. J. Kohn, The Neumann Problem for the Cauchy-Riemann Complex, Princeton University Press, Princeton, 1972.

  9. B. Fridman, Biholomorphic transformations that do not extend continuously to the boundary, Michigan Math. J. 38(1991), 67–73.

  10. G. M. Goluzin, Geometric Theory of Functions of a Complex Variable, American Mathematical Society, Providence, 1969.

  11. R. E. Greene and S. G. Krantz, Function Theory of One Complex Variable, 3rd ed., American Mathematical Society, Providence, RI, 2006.

  12. G. M. Henkin, An analytic polyhedron is not holomorphically equivalent to a strictly pseudoconvex domain, (Russian) Dokl. Akad. Nauk SSSR 210(1973), 1026–1029.

  13. L. H¨ormander, L2 estimates and existence theorems for the ∂ operator, Acta Math. 113(1965), 89–152. w

  14. J. J. Kohn, Global regularity for ∂ on weakly pseudo-convex manifolds, Trans. AMS 181(1973), 273–292.

  15. S. G. Krantz, Function Theory of Several Complex Variables, 2nd ed., American Mathematical Society, Providenc, RI, 2001.

  16. R. M. Range, The Carath´eodory metric and holomorphic maps on a class of weakly pseudoconvex domains, Pacific J. Math. 78(1978), 173–189.

  17. R. M. Range, A remark on bounded strictly plurisubharmonic exhaustion functions, Proc. AMS 81(1981), 220–222.

  18. S. Roman, The formula of Fa`a di Bruno, Am. Math. Monthly 87(1980), 805-809.

  19. E. M. Stein, Harmonic Analysis: Real Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton, NJ, 1993.