Title: Reverse of the Triangle Inequality in Hilbert C*-Modules
Author(s): Nordine Bounader, Abdellatif Abdellatif Chahbi, Samir Kabbaj
Pages: 29-38
Cite as:
Nordine Bounader, Abdellatif Abdellatif Chahbi, Samir Kabbaj, Reverse of the Triangle Inequality in Hilbert C*-Modules, Int. J. Anal. Appl., 9 (1) (2015), 29-38.


In this paper we prove the reverse of triangle inequality via Selberg's  inequalities in the framework of Hilbert  C*-modules.

Full Text: PDF



  1. A.H. Ansari and M.S.Moslehian, Refinement of reverse triangle inequality in inner product spaces.J. Inequalities in Pure and Applied Math., 6(2005). Article ID 64.

  2. A.H. Ansari and M.S.Moslehian, More on reverse triangle inequality in inner product spaces. Inter J. Math. Math Sci, 18(2005), 2883-2893.

  3. N.Bounader and A.Chahbi, Selberg type inequalities in Hilbert C*-modules. Int. Journal of Math. Analysis, 7 (2013), 385-391

  4. J.B. Diaz and F.T. Metcalf,A complementary triangle inequality in Hilbert and Banach spaces. Proc. Amer. Math. Soc., 17(1966), 88-97.

  5. S. Dragomir, Reverse of the triangle inequality via Selberg’s and Boas-Bellman’s inequalities.Facta universitatis (NIS), Ser. Math. Inform. 21(2006), 29C39

  6. S. S. Dragomir, M. Khosravi and M. S. Moslehian, Bessel type inequality in Hilbert C∗- modules. Linear and Multilinear Algebra, 8(2010), 967-975.

  7. A. M. Fink, D.S. Mitrinovic and J. E.Pecaric Classical and new inequalities in analysis. Kluwer Academic, Dordrecht, 1993.

  8. M. Fujii, Selberg inequalty.(1991), 70-76.

  9. M. Fujii and R. Nakamoto, Simultaneous extensions of Selberg inequality and Heinz-KatoFuruta inequality. Nihonkai Math. J. 9(1998), 219-225.

  10. I. Kaplansky, Modules over operateur algebras. Amer. J. Math, (1953), 839-858.

  11. M.Kato, K.S. Saito and T. Tamura, Sharp triangle inequality and its reverse in Banach spaces. Math. Inegal. Appl. 10(2007), 451-460.

  12. M.Khosravi, H.Mahyar, M.S. Moslehyan,Reverse triangle inequality Hilbert C∗-modules. J. Inequal. Pure Appl. Math, 10(2009), Article 110, 11 pages.

  13. E. C. Lance, Hilbert C∗-modules. London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge, 210(1995).

  14. C.-S. Lin, Heinz’s inequality and Bernstein’s inequality. Proceedings of the American Mathematical society, 125(1997), 2319-2325.

  15. J.G. Murphy, C∗-Algebras and operator theory. Academic Press, Boston, 1990.

  16. M. Nakai and T. Tada, The reverse triangle inequality in normed spaces. New Zealand J.math., 25(1996), 181-193.