Title: Quasi-Compact Perturbations of the Weyl Essential Spectrum and Application to Singular Transport Operators
Author(s): Leila Mebarki, Mohammed Benharrat, Bekkai Messirdi
Pages: 83-89
Cite as:
Leila Mebarki, Mohammed Benharrat, Bekkai Messirdi, Quasi-Compact Perturbations of the Weyl Essential Spectrum and Application to Singular Transport Operators, Int. J. Anal. Appl., 9 (2) (2015), 83-89.

Abstract


This paper is devoted to the investigation of the stability of the Weyl essential spectrum of closed densely dened linear operator A subjected to additive perturbation K such that (lambda-A-K)^{-1}K or K(lambda-A-K)^{-1} is a quasi-compact operator. The obtained results are used to describe the Weyl essential spectrum of singular neutron transport operator.


Full Text: PDF

 

References


  1. A. Brunel and D. Revuz, Quelques applications probabilistes de la quasi-compacit´e. Ann. Inst. Henri et Poincar´e, B 10(3) (1974), 301-337.

  2. H. Hennion and L. Herv´e, Limit Theorems for Markov Chains and Stochastic Properties of Dynamical Systems by Quasi-Compactness. Springer-Verlag Berlin Heidelberg (2001).

  3. K. Latrach, Essential spectra on spaces with the Dunford-Pettis property, J. Math. Anal. Appl., 233, (1999), 607-622.

  4. K. Latrach, A. Dehici, Fredholm, Semi-Fredholm Perturbations and Essential spectra, J. Math. Anal. Appl., 259 (2001), 277-301.

  5. K. Latrach, A. Dehici, Relatively strictly singular perturbations, Essential spectra, and Application to transport operators, J. Math. Anal. Appl., 252(2001), 767-789.

  6. K. Latrach, A. Jeribi, Some results on Fredholm operators, essential spectra, and application, J. Math. Anal. Appl., 225, (1998), 461-485.

  7. K. Latrach, J. Martin Paoli, Relatively compact-like perturbations, essensial spectra and application, J. Aust. Math. Soc. 77 (2004), 73-89.

  8. M. Mokhtar-Kharroubi, Time asymptotic behaviour and compactness in neutron transport theory, Euro. J. Mech., B Fluids, 11(1992), 39-68.

  9. M. Schechter, Invariance of essential spectrum, Bull. Amer. Math. Soc. 71 (1965), 365-367.

  10. K. Yosida, Quasi-completely continuous linear functional operations, Jap. Journ. of Math., 15 (1939), 297– 301.

  11. K. Yosida, Functional Analysis, Springer-Verlag Berlin Heiderlberg, 1980.

  12. K. Yosida, S. Kakutani, Operator-theoretical treatment of Markov’s process and mean ergodic theorem, Ann. of Math., 42, (1941), 188-228.