Title: On Weak and Strong Convergence Theorems of Modified SP-Iteration Scheme for Total Asymptotically Nonexpansive Mappings
Author(s): G. S. Saluja
Pages: 24-39
Cite as:
G. S. Saluja, On Weak and Strong Convergence Theorems of Modified SP-Iteration Scheme for Total Asymptotically Nonexpansive Mappings, Int. J. Anal. Appl., 10 (1) (2016), 24-39.

Abstract


In this paper, we study modified SP-iteration scheme for three total asymptotically nonexpansive mappings and also establish some weak and strong convergence theorems for mentioned mappings and scheme to converge to common fixed points in the framework of Banach spaces. Our results extend and generalize the previous works from the current existing literature.

Full Text: PDF

 

References


  1. R. P. Agarwal, Donal O’Regan, D. R. Sahu, Iterative construction of fixed points of nearly asymptotically nonexpansive mappings, Nonlinear Convex Anal. 8(1)(2007), 61–79.

  2. Ya. I. Albert, C. E. Chidume, H. Zegeye, Approximating fixed point of total asymptotically nonexpansive mappings, Fixed Point Theory Appl. (2006) Art. ID 10673.

  3. R. E. Bruck, T. Kuczumow, S. Reich, Convergence of iterates of asymptotically nonexpansive mappings in Banach spaces with the uniform Opial property, Colloq. Math. 65(1993), 169–179.

  4. C. E. Chidume, E. U. Ofoedu, Approximation of common fixed points for finite families of total asymptotically nonexpansive mappings, J. Math. Anal. Appl. 333(2007), 128–141.

  5. J. Garcia Falset, W. Kaczor, T. Kuczumow, S. Reich, Weak convergence theorems for asymptotically nonexpansive mappings and semigroups, Nonlinear Anal., TMA, 43(3)(2001), 377–401.

  6. K. Goebel, W. A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 35(1)(1972), 171–174.

  7. R. Glowinski, P. Le Tallec, Augemented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics, Siam, Philadelphia, (1989).

  8. S. Haubruge, V. H. Nguyen, J. J. Strodiot, Convergence analysis and applications of the Glowinski Le Tallec splitting method for finding a zero of the sum of two maximal monotone operators, J. Optim. Theory Appl. 97(1998), 645–673.

  9. S. Ishikawa, Fixed point by a new iteration method, Proc. Amer. Math. Soc. 44(1974), 147–150.

  10. W. A. Kirk, Fixed point theorems for non-lipschitzian mappings of asymptotically nonexpansive type, Israel J. Math. 17 (1974), 339–346.

  11. N. Maiti, M. K. Ghosh, Approximating fixed points by Ishikawa iterates, Bull. Aust. Math. Soc. 40(1989), 113–117.

  12. W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4(1953), 506–510.

  13. M. A. Noor, New approximation schemes for general variational inequalities, J. Math. Anal. Appl. 251(1)(2000), 217–229.

  14. M. A. Noor, Three-step iterative algorithms for multivalued quasi variational inclusions, J. Math. Anal. Appl. 255(2001), 589–604.

  15. Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73(1967), 591–597.

  16. W. Phuengrattana, S. Suantai, On the rate of convergence of Mann, Ishikawa, Noor and SP iterations for continuous functions on an arbitrary interval, J. Comput. Appl. Math. 235(2011), 3006–3014.

  17. J. Schu, Weak and strong convergence to fixed points of asymptotically nonexpansive mappings, Bull. Austral. Math. Soc. 43(1)(1991), 153–159.

  18. H. F. Senter, W. G. Dotson, Approximating fixed points of nonexpansive mappings, Proc. Amer. Math. Soc. 44(1974), 375–380.

  19. K. Sitthikul, S. Saejung, Convergence theorems for a finite family of nonexpansive and asymptotically nonex- pansive mappings, Acta Univ. Palack. Olomuc. Math. 48(2009), 139–152.

  20. K. K. Tan, H. K. Xu, Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process, J. Math. Anal. Appl. 178(1993), 301–308.

  21. B. L. Xu, M. A. Noor, Fixed point iterations for asymptotically nonexpansive mappings in Banach spaces, J. Math. Anal. Appl. 267(2002), 444–453.