Title: Fejer-Hadamard Inequlality for Convex Functions on the Coordinates in a Rectangle from the Plane
Author(s): G. Farid, M. Marwan, Atiq Ur Rehman
Pages: 40-47
Cite as:
G. Farid, M. Marwan, Atiq Ur Rehman, Fejer-Hadamard Inequlality for Convex Functions on the Coordinates in a Rectangle from the Plane, Int. J. Anal. Appl., 10 (1) (2016), 40-47.

Abstract


We give Fejer-Hadamard inequality for convex functions on coordinates in the rectangle from the plane. We define some mappings associated to it and discuss their properties.

Full Text: PDF

 

References


  1. S. Abramovich, G. Farid and J. E. Pecaric, More about Jensens inequality and Cauchys means for superquadratic functions, J. Math. Inequal. 7(1) (2013), 11–24.

  2. S. I. Butt, J. E. Pecaric and Atiq Ur Rehman, Non-symmetric Stolarsky means, J. Math. Inequal. 7(2) (2013), 227–237.

  3. S. S. Dragomir, J. E. Pecaric and J. Sáandor, A note on the Jensen-Hadamard inequality, L’ Anal. Num. Theor. L’Approx. (Romania) 19 (1990), 21–28.

  4. S. S. Dragomir, D. Barbu and C. Buse, A probabilistic argument for the convergence of some sequences associated to Hadamard’s inequality, Studia Univ. Babe¸s-Bolgai, Mathematica 38 (1993), 29–34.

  5. S. S. Dragomir, On Hadamards inequality for convex functions on the co-ordinates in a rec- tangle from the plane, Taiwanese J Math. 4 (2001), 775–788.

  6. S. S. Dragomir, On Hadamard’s inequality for convex functions, Mat. Balkanica 6 (1992), 215–222.

  7. S. S. Dragomir, Refinements of the Hermite–Hadamard inequality for convex functions, J. Inequal. Pure Appl. Math. 6(5) (2005), Article 140.

  8. S. S. Dragomir and N. M. lonescu, Some integral inequalities for differentiable convex functions. Coll. Pap. of the Fac. of Sci. Kragujevac (Yugoslavia) 13 (1992), 11–16.

  9. S. S. Dragomir, Some integral inequlities for differentiable convex functions, Contributions, Macedonian Acad. of Sci. and Arts (Scopie) 16 (1992), 77–80.

  10. S. S. Dragomir, and N. M. Ionescu, Some remarks in convex functions, L’Anal. Num. Theor. L’Approx. (Romania), 21 (1992), 31–36.

  11. L. Fejér,Über die Fourierreihen, II. Math. Naturwiss Anz Ungar. Akad. Wiss. 24 (1906), 369–390

  12. D. S. Mitrinovisc, J. E. Pecaric and A. M. Fink, Classical and New Inequalities in Analysis, Kluwer Academic Publishers, 1993.

  13. D. S. Mitrinovi´c, I. B. Lackovic, Hermite and convexity, Aequationes Math. 28 (1985).

  14. C. P. Niculescu, L. E. Persson, Convex functions and their applications: A contemporary approach, Springer, New York, 2006.

  15. J. E. Pe caric and S. S. Dragomir, A generalisation of Hadamard’s inequality for isotonic linear functionals, Rodovi Math. (Sarajevo) 7 (1991), 103–107.

  16. J. E. Pecaric, F. Proschan, Y. L. Tong, Convex Functions, Partial Ordering, and Stasitcal Applications, Academic Press, Inc. 1992.

  17. J. E. Pecaric and S. S. Dragomir, On some integral inequalities for convex functions, Bull. Mat. Inst. Pol. Iasi 36 (1990), 19–23.