Title: Computable Frames in Computable Banach Spaces
Author(s): S.K. Kaushik, Poonam Mantry
Pages: 93-100
Cite as:
S.K. Kaushik, Poonam Mantry, Computable Frames in Computable Banach Spaces, Int. J. Anal. Appl., 11 (2) (2016), 93-100.


We develop some parts of the frame theory in Banach spaces from the point of view of Computable Analysis. We define computable M-basis and use it to construct a computable Banach space of scalar valued sequences. Computable Xd frames and computable Banach frames are also defined and computable versions of sufficient conditions for their existence are obtained.

Full Text: PDF



  1. S. Banach and S. Mazur, Sur les fonctions calculables, Ann. Soc. Pol. de Math. 16 (1937), 223. Google Scholar

  2. V. Brattka, Computability Of Banach Space Principles, Informatik Berichte 286, FernUniversitat Hagen, Fachbereich Informatik, Hagen, June 2001. Google Scholar

  3. V. Brattka, Effective Representations of the space of linear bounded operators, Applied General Topology, 4(1)(2003), 115-131. Google Scholar

  4. V. Brattka, Computable versions of the uniform boundedness Theorem, in: Z. Chatzidakis, P.Koepke, W. Pohlers (Eds.), Logic Colloquium 2002, in: Lecture Notes in Logic, Vol 27, Association for Symbolic Logic, Urbana, 2006. Google Scholar

  5. V. Brattka, Computability over topological structures. In S. Barry Cooper and Sergey S. Goncharov, editors, Computability and Models, 93-136. Kluwer Academic Publishers, New York, 2003. Google Scholar

  6. V. Brattka, A computable version of Banach’s Inverse Mapping Theorem, Annals of Pure and Applied Logic, 157 (2009), 85-96. Google Scholar

  7. V. Brattka, R. Dillhage, Computability of compact operators on computable Banach spaces with bases. Math. Log. Quart.53 (2007), 345-364. Google Scholar

  8. V. Brattka, A. Yoshikawa, Towards computability of elliptic boundary value problems in variational formulation, J. Complexity 22(6) (2006), 858-880. Google Scholar

  9. P.G. Casazza, O. Christensen, D.T. Stoeva, Frame expansions in separable Banach spaces, J. Math. Anal. Appl., 307 (2005), 710-723. Google Scholar

  10. K. Grochenig, Describing functions : Atomic decompositions versus frames, Monatsh. Math. 112 (1991), 1-41. Google Scholar

  11. A. Grzegorczyk, On the definitions of computable real continuous functions, Fund. Math. 44 (1957), 61-71. Google Scholar

  12. C. Kreitz, K. Weihrauch, A unified approach to constructive and recursive analysis, in: M. Richter, E. Borger, W. Oberschelp, B.Schinzel, W. Thomas (Eds.), Computation and Proof Theory, Lecture Notes in Mathematics, Vol. 1104, Springer, Berlin, 1984, 259-278. Google Scholar

  13. D. Lacombe, Les ensembles recursivement ouverts ou fermes, et leurs applications a 1’Analyse recursive, Comptes, Rendus 246 (1958), 28-31. Google Scholar

  14. D. Lacombe, Quelques procedes de definition en topologie recursive, in: A. Heyting, editor, Constructivity in mathematics, (North- Holland, Amsterdam 1959), 129-158. Google Scholar

  15. R. E. Megginson, An Introduction to Banach Space Theory, Graduate Texts in Mathematics 183, Springer, New York, 1989. Google Scholar

  16. M.B. Pour-El, J.I. Richards, Computability in Analysis and Physics, Springer, Berlin, 1989. Google Scholar

  17. I. Singer, Bases in Banach spaces-II, Springer-Verlag, New York, Heidelberg, 1981. Google Scholar

  18. A. M. Turing, On computable numbers, with an application to the ”Entscheidungsproblem”, Proc. London Math. Soc. 42 (1936), 230-265. Google Scholar

  19. K. Weihrauch, Computable Analysis, Springer, Berlin, 2000. Google Scholar


Copyright © 2020 IJAA, unless otherwise stated.