Title: An Implicit Algorithm for a Family of Total Asymptotically Nonexpansive Mappings in CAT(0) Spaces
Author(s): G. S. Saluja
Pages: 118-128
Cite as:
G. S. Saluja, An Implicit Algorithm for a Family of Total Asymptotically Nonexpansive Mappings in CAT(0) Spaces, Int. J. Anal. Appl., 12 (2) (2016), 118-128.

Abstract


In this paper, we establish some strong convergence theorems of an implicit algorithm for a finite family of of total asymptotically nonexpansive mappings in the setting of CAT(0) spaces. Our results extend and generalize several recent results from the current existing literatures (see, e.g., [2, 9, 14, 16, 17, 25, 29]).

Full Text: PDF

 

References


  1. M. Abbas, B.S. Thakur and D. Thakur, Fixed points of asymptotically nonexpansive mappings in the intermediate sense in CAT(0) spaces, Commun. Korean Math. Soc. 28(4) (2013), 107-121.

  2. M. Ba¸ sarir and A. S ¸ahin, On the strong and 4-convergence for total asymptotically nonexpansive mappings on a CAT(0) space, Carpathian Math. Pub. 5(2) (2013), 170-179.

  3. M.R. Bridson and A. Haefliger, Metric spaces of non-positive curvature, Vol. 319 of Grundlehren der Mathematischen Wissenschaften, Springer, Berlin, Germany, 1999.

  4. F. Bruhat and J. Tits, Groups reductifs sur un corps local, Institut des Hautes Etudes Scientifiques. Publications Mathematiques, 41 (1972), 5-251.

  5. S.S. Chang, L. Wang, H.W. Joesph Lee, C.K. Chan and L. Yang, Demiclosed principle and 4-convergence theorems for total asymptotically nonexpansive mappings in CAT(0) spaces, Appl. Math. Comput. 219(5) (2012), 2611-2617.

  6. S. Dhompongsa and B. Panyanak, On 4-convergence theorem in CAT(0) spaces, Comput. Math. Appl. 56(10) (2008), 2572-2579.

  7. H. Fukhar-ud-din and S.H. Khan, Convergence of two-step iterative scheme with errors for two asymptotically nonexpansive mappings, Int. J. Math. Math. Sci. (2004), no. 37-40, 1965-1971.

  8. H. Fukhar-ud-din and A.R. Khan, Convergence of implicit iterates with errors for mappings with unbounded domain in Banach spaces, Int. J. Math. Math. Sci. 2005:10, 1643-1653.

  9. H. Fukhar-ud-din and S.H. Khan, Convergence of iterates with errors of asymptotically quasi-nonexpansive and applications, J. Math. Anal. Appl. 328 (2007), 821-829.

  10. K. Goebel and W.A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 35(1) (1972), 171-174.

  11. W.P. Guo, Y.J. Cho and W. Guo, Convergence theorems for mixed type asymptotically nonexpansive mappings, Fixed Point Theory Appl. 2012 (2012) Art. ID 224.

  12. M.A. Khamsi and W.A. Kirk, An introduction to metric spaces and fixed point theory, Pure Appl. Math, Wiley- Interscience, New York, NY, USA, 2001.

  13. S.H. Khan and M. Abbas, Strong and 4-convergence of some iterative schemes in CAT(0) spaces, Comput. Math. Appl. 61(1) (2011), 109-116.

  14. A.R. Khan, M.A. Khamsi and H. Fukhar-ud-din, Strong convergence of a general iteration scheme in CAT(0) spaces, Nonlinear Anal.: Theory, Method and Applications, 74(3) (2011), 783-791.

  15. P. Kumam. G.S. Saluja and H.K. Nashine, Convergence of modified S-iteration process for two asymptotically nonexpansive mappings in the intermediate sense in CAT(0) spaces, J. Ineq. Appl. 2014 (2014), Art. ID 368.

  16. B. Nanjaras and B. Panyanak, Demiclosed principle for asymptotically nonexpansive mappings in CAT(0) spaces, Fixed Point Theory Appl. 2010 (2010), Art. ID 268780, 14 pages.

  17. Y. Niwongsa and B. Panyanak, Noor iterations for asymptotically nonexpansive mappings in CAT(0) spaces, Int. J. Math. Anal. 4(13) (2010), 645-656.

  18. M.O. Osilike and D.I. Igbokue, Weak and strong convergence theorems for fixed points of pseudocontractions and solution of monotone type operator equations, Comput. Math. Appl. 40 (2000), 559-569.

  19. A. S ¸ahin and M. Ba¸ sarir, On the strong convergrnce of a modified S-iteration process for asymptotically quasi- nonexpansive mapping in CAT(0) space, Fixed Point Theory Appl. 2013 (2013), Art. ID 12, 10 pages.

  20. G.S. Saluja and H.K. Nashine, Convergence of an implicit iteration process for a finite family of asymptotically quasi-nonexpansive mappings in convex metric spaces, Opuscula Mathematica 30(3) (2010), 331-340.

  21. G.S. Saluja, Weak and strong convergence theorems for four nonexpansive mappings in uniformly convex Banach spaces, Thai. J. Math. 10(2) (2012), 305-319.

  22. G.S. Saluja, Convergence theorems for asymptotically nonexpansive mappings in the intermediate sense in uniformly convex Banach spaces, J. Indian Acad. Math. 34(2) (2012), 451-467.

  23. G.S. Saluja and H.K. Nashine, Weak convergence theorems of two-step iteration process for two asymptotically quasi-nonexpansive mappings, Indian J. Math. 56(3) (2014), 291-311.

  24. G.S. Saluja and M. Postolache, Strong and ∆-convergence theorems for two asymptotically nonexpansive mappings in the intermediate sense in CAT(0) spaces, Fixed Point Theory Appl. 2015 (2015), Art. ID 12.

  25. G.S. Saluja, Strong and ∆-convergence theorems for two totally asymptotically nonexpansive mappings in CAT(0) spaces, Nonlinear Anal. Forum 20(2) (2015), 107-120.

  26. H.F. Senter and W.G. Dotson, Approximating fixed points of nonexpansive mappings, Proc. Amer. Math. Soc. 44 (1974), 375-380.

  27. Z. Sun, Strong convergence of an implicit iteration process for a finite family of asymptotically quasi-nonexpansive mappings, J. Math. Anal. Appl. 286(1) (2003), 351-358.

  28. R. Wittmann, Approximation of fixed points of nonexpansive mappings, Arch. Math. 58 (1992), 486-491.

  29. H.K. Xu, R.G. Ori, An implicit iteration process for nonexpansive mappings, Numer. Funct. Anal. Optim. 22(5-6) (2001), 767-773.