Best Proximity Points for a New Class of Generalized Proximal Mappings
Main Article Content
Abstract
The best proximity points are usually used to find the optimal approximate solution of the operator equation Tx = x, when T has no fixed point. In this paper, we prove some best proximity point theorems for nonself multivalued operators, following the foot steps of Basha and Shahzad [Best proximity point theorems for generalized proximal contractions, Fixed Point Theory Appl., 2012, 2012:42].
Article Details
References
- K. Fan, Extensions of two fixed point theorems of F. E. Browder. Math. Z., 112 (1969), 234-240.
- A. Eldred, P. Veeramani, Existence and convergence of best proximity points, J. Math. Anal. Appl., 323 (2006), 1001-1006.
- M. Jleli, B. Samet, Best proximity point for α-ψ-proximal contraction type mappings and applications, Bull. Sci. Math., 137 (2013), 977-995.
- M. U. Ali, T. Kamran, N. Shahzad, Best proximity point for α-ψ-proximal contractive multimaps, Abstr. Appl. Anal., 2014 (2014), Art. ID 181598.
- A. Abkar, M. Gabeleh, Best proximity points for asymptotic cyclic contraction mappings, Nonlinear Anal., 74 (2011), 7261-7268.
- A. Abkar, M. Gabeleh, Best proximity points for cyclic mappings in ordered metric spaces, J. Optim. Theory Appl., 151 (2011), 418-424.
- M. Derafshpour, S. Rezapour, N. Shahzad, Best proximity points of cyclic φ-contractions in ordered metric spaces, Topol. Meth. Nonlin. Anal., 37 (2011), 193-202.
- C. Di Bari, T. Suzuki, C. Vetro, Best proximity point for cyclic Meir-Keeler contraction, Nonlinear Anal., 69 (2008), 3790-3794.
- S. Rezapour, M. Derafshpour, N. Shahzad, Best proximity points of cyclic φ-contractions on reflexive Banach spaces, Fixed Point Theory Appl., 2010 (2010), Art. ID 946178.
- C. Vetro, Best proximity points: convergence and existence theorems for p-cyclic mappings, Nonlinear Anal. 73 (7) (2010), 2283-2291.
- M. A. Alghamdi, M. A. Alghamdi, N. Shahzad, Best proximity point results in geodesic metric spaces, Fixed Point Theory Appl., 2012 (2012), Art. ID 234.
- M. A. Al-Thagafi, N. Shahzad, Best proximity pairs and equilibrium pairs for Kakutani multimaps, Nonlinear Anal., 70 (3) (2009), 1209-1216.
- J. Markin, N. Shahzad, Best proximity points for relatively u-continuous mappings in Banach and hyperconvex spaces, Abstr. Appl. Anal. 2013 (2013), Art. ID 680186.
- H. K. Nashine, P. Kumam, C. Vetro, Best proximity point theorems for rational proximal contractions, Fixed Point Theory Appl., 2013 (2013), Art. ID 95.
- A. Abkar, M. Gabeleh, The existence of best proximity points for multivalued non-self mappings, RACSAM, 107 (2) (2013), 319-325.
- B. S. Choudhury, N. Metiya, M. Postolache, P. Konar, A discussion on best proximity point and coupled best proximity point in partially ordered metric spaces. Fixed Point Theory Appl., 2015 (2015), Art. ID 170.
- W. Shatanawi, A. Pitea, Best proximity point and best proximity coupled point in a complete metric space with (P)-property, Filomat, 29 (1) (2015), 63-74.
- M. Jamali, S.M. Vaezpour, Best proximity point for certain nonlinear contractions in Menger probabilistic metric spaces, J. Adv. Math. Stud., 9 (2) (2016), 338-347.
- A. Bejenaru, A. Pitea, Fixed point and best proximity point theorems in partial metric spaces, J. Math. Anal., 7 (4) (2016), 25-44.
- S. S. Basha, N. Shahzad, Best proximity point theorems for generalized proximal contractions, Fixed Point Theory Appl., 2012 (2012), Art. ID 42.
- D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl., 2012 (2012), Art. ID 94.
- M. Cosentino, P. Vetro, Fixed point results for F-contractive mappings of Hardy-Rogers-type, Filomat 28 (4) (2014), 715-722.
- G. Minak, A. Helvac, I. Altun, Ciric type generalized F-contractions on complete metric spaces and fixed point results, Filomat, 28 (6) (2014), 1143-1151.
- M. Sgroi, C. Vetro, Multi-valued F-contractions and the solution of certain functional and integral equations, Filomat 27 (7) (2013), 1259-1268.
- D. Paesano, C. Vetro, Multi-valued F-contractions in 0-complete partial metric spaces with application to Volterra type integral equation,Rev. R. Acad. Cienc. Exactas Fs. Nat., Ser. A Mat., 108 (2) (2014), 1005-1020.
- H. Piri, P. Kumam, Some fixed point theorems concerning F-contraction in complete metric spaces, Fixed Point Theory Appl., 2014 (2014), Art. ID 210.
- O. Acar, I. Altun, A fixed point theorem for multivalued mappings with δ-distance, Abstr. Appl. Anal., 2014 (2014), Art. ID 497092.
- R. Batra, S. Vashistha, Fixed points of an F-contraction on metric spaces with a graph, Inter. J. Comput. Math., 91 (12) (2014), 2483-2490.