Some Integral Inequalities for Local Fractional Integrals
Main Article Content
Abstract
In this paper, firstly we extend some generalization of the Hermite-Hadamard inequality and Bullen inequality to generalized convex functions. Then, we give some important integral inequalities related to these inequalities.
Article Details
References
- P. S. Bullen, Error estimates for some elementary quadrature rules, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. (1978) 602-633, (1979) 97-103.
- S. S. Dragomir and R.P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett. 11 (5) (1998), 91-95.
- S. S. Dragomir and C. E. M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000.
- S. S. Dragomir and R. P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett. 11 (5) (1998), 91-95.
- A. El Farissi, Z. Latreuch and B. Belaidi, Hadamard-Type inequalities for twice diffrentiable functions, RGMIA Research Report Collection, 12 (1) (2009), Art. ID 6.
- A. El Farissi, Simple proof and refinement of Hermite-Hadamard inequality, J. Math. Inequal. 4 (3) (2010), 365-369.
- X. Gao, A note on the Hermite-Hadamard inequality, JMI Jour. Math. Ineq..4 (4) (2010), 587-591.
- J. Hadamard, Etude sur les proprietes des fonctions entieres et en particulier d'une fonction consideree par Riemann, J. Math. Pures Appl. 58 (1893), 171-215.
- U. S. Kirmaci and M. E. Ozdemir, On some inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula, Appl. Math Comput. 153 (2004), 361-368.
- U. S. Kirmaci and R. Dikici, On some Hermite-Hadamard type inequalities for twice differentiable mappings and applications, Tamkang J. Math. 44 (1) (2013), 41-51.
- U. S. Kirmaci, Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula, Appl. Math. Comput. 147 (2004) 137-146.
- D. S. Mitrinovic, J. E. Pecaric, and A. M. Fink, Classical and new inequalities in analysis, ser. Math. Appl. (East European Ser.). Dordrecht: Kluwer Academic Publishers Group, vol. 61, 1993.
- H. Mo, X. Sui and D. Yu, Generalized convex functions on fractal sets and two related inequalities, Abstr. Appl. Anal. 2014 (2014), Art. ID 636751, 7 pages.
- M. Z. Sarikaya and H. Yaldiz, On the Hadamard's type inequalities for L-Lipschitzian mapping, Konuralp J. Math. 1 (2) (2013), 33-40.
- X. J. Yang, Advanced Local Fractional Calculus and Its Applications, World Science Publisher, New York, 2012.
- J. Yang, D. Baleanu and X. J. Yang, Analysis of fractal wave equations by local fractional Fourier series method, Adv. Math. Phys. 2013 (2013), Art. ID 632309.