Uniform Lacunary Statistical Convergence on Time Scales
Main Article Content
Abstract
We introduce (θ,m)-uniform lacunary density of any set and (θ,m)-uniform lacunary statistical convergence on an arbitrary time scale. Moreover, (θ,m)-uniform strongly p-lacunary summability and some inclusion relations about these new concepts are also presented.
Article Details
References
- Y. Altin, H. Koyunbakan and E. Yilmaz, Uniform statistical convergence on time scales, J. Appl. Math. 2014 (2014), Art. ID 471437.
- V. Baláz, and T. Salát, Uniform density u and corresponding I u -convergence, Math. Commun. 11(1) (2006), 1-7.
- C. Belen and S. A. Mohiuddine, Generalized weighted statistical convergence and application, Appl. Math. Comput. 219 (2013), 9821-9826.
- M. Bohner and A. Peterson, Dynamic equations on time scales, an introduction with applications, Birkhauser, Boston, 2001.
- N. L. Braha, H. M. Srivastava and S. A. Mohiuddine, A Korovkin's type approximation theorem for periodic functions via the statistical summability of the generalized de la Vall ´ ee Poussin mean, Appl. Math. Comput. 228 (2014) 162-169.
- A. Cabada and D. R. Vivero, Expression of the Lebesque ∆-integral on time scales as a usual Lebesque integral; application to the calculus of ∆-antiderivates, Math. Comp. Model. 43 (2006), 194-207.
- H. Cakalli, Lacunary statistical convergence in topological groups, Indian J. Pure Appl. Math. 26(2) (1995), 113-119.
- J. S. Connor, The statistical and strong p-Cesà ro convergence of sequences, Analysis 8 (1988), 47-63.
- J. S. Connor and E. Sava ¸ s, Lacunary statistical and sliding window convergence for measurable functions, Acta Math. Hung. 145(2) (2015), 416-432.
- O. H. H. Edely, S. A. Mohiuddine and A. K. Noman, Korovkin type approximation theorems obtained through generalized statistical convergence, Appl. Math. Letters 23 (2010) 1382-1387.
- M. Et, Generalized Cesà ro difference sequence spaces of non-absolute type involving lacunary sequences, Appl. Math. Comput. 219(17) (2013), 9372-9376.
- M. Et, S. A. Mohiuddine and A. Alotaibi, On λ-statistical convergence and strongly λ-summable functions of order α, J. Inequal. Appl. 2013 (2013), Art. ID 469.
- H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241-244.
- A. R. Freedman, J. J. Sember and M. Raphael, Some Cesà ro-type summability spaces, Proc. London Math. Soc. 37(3) (1978), 508-520.
- J. A. Fridy, On statistical convergence, Analysis 5 (1985), 301-313.
- J. A. Fridy and C. Orhan, Lacunary statistical convergence, Pac. J. Math. 160(1) (1993), 43-51.
- J. A. Fridy and C. Orhan, Lacunary statistical summability, J. Math. Anal. Appl. 173(2) (1993), 497-504.
- T. Gulsen and E. Yilmaz, Spectral theory of Dirac system on time scales, Appl. Anal. 1-11 (2016), Doi:10.1080/00036811.2016.1236923.
- G. Sh. Guseinov, Integration on time scales, J. Math. Anal. Appl. 285(1) (2003), 107-227.
- B. Hazarika, S. A. Mohiuddine and M. Mursaleen, Some inclusion results for lacunary statistical convergence in locally solid Riesz spaces, Iranian J. Sci. Tech. 38 (A1) (2014), 61-68.
- S. Hilger, Analysis on measure chains-A unified approach to continuous and discrete calculus, Results Math. 18 (1990), 18-56.
- S. Hilger, Ein Makettenkalkl mit Anwendung auf Zentrumsmannigfaltigkeiten Ph.D. Thesis, Universtat Wurzburg, 1988.
- I. J. Maddox, Spaces of strongly summable sequences, Quart. J. Math. 18(1) (1967), 345-355.
- S. A. Mohiuddine and M. A. Alghamdi, Statistical summability through lacunary sequence in locally solid Riesz spaces, J. Inequal. Appl. 2012 (2012), Art. ID 225.
- S. A. Mohiuddine and M. Aiyub, Lacunary statistical convergence in random 2-normed spaces, Appl. Math. Inform. Sci. 6(3) (2012), 581-585.
- S. A. Mohiuddine, A. Alotaibi and M. Mursaleen, Statistical summability (C,1) and a Korovkin type approximation theorem, J. Inequal. Appl. 2012 (2012), Art. ID 172.
- S. A. Mohiuddine and Q. M. D. Lohani, On generalized statistical convergence in intuitionistic fuzzy normed space, Chaos Solitons Fract. 42 (2009), 1731-1737.
- F. Moricz, Statistical limits of measurable functions, Analysis, 24 (2004), 1-18.
- M. Mursaleen and S. A. Mohiuddine, On lacunary statistical convergence with respect to the intuitionistic fuzzy normed space, Journal of Computational and Applied Mathematics, 233(2) (2009), 142-149.
- F. Nuray, Uniform statistical convergence, Sci. Engineer. J. Firat Univ. 11(3) (1999), 219-222.
- F. Nuray and B. Aydin, Strongly summable and statistically convergent functions, Inform. Tech. Valdymas 30(1) (2004), 74-76.
- R. A. Raimi, Convergence, density, and Ï„-density of bounded sequences, Proc. Amer. Math. Soc. 14 (1963), 708-712.
- D. Rath and B. C. Tripathy, On statistically convergent and statistically Cauchy sequences, Indian J. Pure Appl. Math. 25(4) (1994), 381-386.
- E. Sava ¸ s and F. Nuray, On σ-statistically convergence and lacunary σ-statistically convergence, Math. Slovaca 43(3) (1993), 309-315.
- M. S. Seyyidoglu and N. O. Tan, A note on statistical convergence on time scale, J. Inequal. Appl. 2012 (2012), Art. ID 219.
- M. S. Seyyidoglu and N. O. Tan, On a generalization of statistical cluster and limit points, Adv. Difference Equ. 2015 (2015), Art. ID 55.
- B. C. Tripathy, On statistical convergence, Proc. Est. Aca. Sci. Phy. 47(4) (1998), 299-303.
- C. Turan and O. Duman, Statistical convergence on time scales and its characterizations, Advances in Applied Mathematics and Approximation Theory, Springer Proc. Math. Stat. 41 (2013), 57-71.
- C. Turan and O. Duman, Convergence Methods on Time Scales, 11th international conference of numerical analysis and Applied Mathematics, AIP Conference Proc. 1558 (2013), 1120-1123.
- H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math. 2 (1951), 73-74.
- E. Yilmaz, Y. Altin and H. Koyunbakan, λ-Statistical convergence on time scales, Dyn. Cont. Disc. Impul. Syst. Ser. A: Math. Anal. 23(2016), 69-78.
- A. Zygmund, Trigonometrical Series, Monogr. Mat., vol. 5. Warszawa-Lwow 1935.