Convergence Theorems for Asymptotically Quasi-Nonexpansive Type Mappings in Convex Metric Spaces

Main Article Content

G. S. Saluja

Abstract

The aim of this paper to study a Noor-type iteration process with errors for approximating common fixed point of a finite family of uniformly L-Lipschitzian asymptotically quasi-nonexpansive type mappings in the framework of convex metric spaces. We give a necessary and sufficient condition for strong convergence of said iteration scheme involving a finite family of above said mappings and also establish a strong convergence theorem by using condition (A). The results presented in this paper extend, improve and unify some existing results in the previous work.

Article Details

References

  1. S.S. Chang, J.K. Kim and D.S. Jin, Iterative sequences with errors for asymptotically quasinonexpansive type mappings in convex metric spaces, Archives of Inequality and Applications 2(2004), 365-374.
  2. Y.J. Cho, H. Zhou and G. Guo, Weak and strong convergence theorems for three step iterations with errors for asymptotically nonexpansive mappings, Comput. Math. Appl. 47(2004), 707-717.
  3. H. Fukhar-ud-din and S.H. Khan, Convergence of iterates with errors of asymptotically quasinonexpansive mappings and applications, J. Math. Anal. Appl. 328(2)(2007), 821-829.
  4. H. Fukhar-ud-din, A.R. Khan and M.A.A. Khan, A new implicit algorithm of asymptotically quasi-nonexpansive maps in uniformly convex Banach spaces, IAENG Int. J. Appl. Maths. 42(3)(2008).
  5. M.K. Ghosh and L. Debnath, Convergence of Ishikawa iterates of quasi-nonexpansive mappings, J. Math. Anal. Appl. 207(1997), 96-103.
  6. K. Goebel and W.A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 35(1972), 171-174.
  7. J.U. Jeong and S.H. Kim, Weak and strong convergence of the Ishikawa iteration process with errors for two asymptotically nonexpansive mappings, Appl. Math. Comput. 181(2) (2006), 1394-1401.
  8. J.K. Kim, K.H. Kim and K.S. Kim, Three-step iterative sequences with errors for asymptotically quasi-nonexpansive mappings in convex metric spaces, Nonlinear Anal. Convex Anal. RIMS Vol. 1365(2004), 156-165.
  9. W.A. Kirk, Fixed point theorems for non-lipschitzian mappings of asymptotically nonexpansive type, Israel J. Math. 17(1974), 339-346.
  10. Q.H. Liu, Iterative sequences for asymptotically quasi-nonexpansive mappings, J. Math. Anal. Appl. 259(2001), 1-7.
  11. Q.H. Liu, Iterative sequences for asymptotically quasi-nonexpansive mappings with error member, J. Math. Anal. Appl. 259(2001), 18-24.
  12. Q.H. Liu, Iterative sequences for asymptotically quasi-nonexpansive mappings with error member of uniformly convex Banach spaces, J. Math. Anal. Appl. 266(2002), 468-471.
  13. W.V. Petryshyn and T.E. Williamson, Strong and weak convergence of the sequence of successive approximations for quasi-nonexpansive mappings, J. Math. Anal. Appl. 43(1973), 459-497.
  14. G.S. Saluja, Convergence of fixed point of asymptotically quasi-nonexpansive type mappings in convex metric spaces, J. Nonlinear Sci. Appl. 1(3)(2008), 132-144.
  15. W. Takahashi, A convexity in metric space and nonexpansive mappings I, Kodai Math. Sem. Rep. 22(1970), 142-149.
  16. K.K. Tan and H.K. Xu, Fixed point iteration processes for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 122(1994), 733-739.
  17. Y.-X. Tian, Convergence of an Ishikawa type iterative scheme for asymptotically quasinonexpansive mappings, Compt. Math. Appl. 49(11-12)(2005), 1905-1912.
  18. Y.-X. Tian and Chun-de Yang, Convergence theorems of three-step iterative scheme for a finite family of uniformly quasi-Lipschitzian mappings in convex metric spaces, Fixed Point Theory and Applications, Vol. 2009, Article ID 891965, 12 pages, doi:10.1155/2009/891965.
  19. B.L. Xu and M.A. Noor, Fixed point iterations for asymptotically nonexpansive mappings in Banach spaces, J. Math. Anal. Appl. 267(2002), no.2, 444-453.
  20. Y. Xu, Ishikawa and Mann iterative processes with errors for nonlinear strongly accretive operator equations, J. Math. Anal. Appl. 224(1)(1998), 91-101.
  21. H. Zhou; J.I. Kang; S.M. Kang and Y.J. Cho, Convergence theorems for uniformly quasilipschitzian mappings, Int. J. Math. Math. Sci. 15(2004), 763-775.