The Essential Spectrum of a Sequence of Linear Operators in Banach Spaces

Main Article Content

Aymen Ammar, Noui Djaidja, Aref Jeribi

Abstract

In this work we introduce some essential spectra $(\sigma_{ei}, i=1,...,5)$ of a sequence of closed linear operators $(T_{n})_{n\in\mathbb{N}}$ on Banach space, we prove that if $(T_{n})_{n\in\mathbb{N}}$ converges in the generalized sense to a closed linear operator $T$, then there exists $n_{0}\in \mathbb{N}$ such that, for every $n\geq n_{0}$, we have $\sigma_{ei}(\lambda _{0}-(T_{n}+B))\subseteq \sigma _{ei}(\lambda_{0}-(T+B)), i=1,...,5$, where $B$ is a bounded linear operator, and $\lambda _{0}\in \mathbb{C}$. The same treatment is made when $(T_{n}-T)$ converges to zero compactly.

Article Details

References

  1. A. Ammar and A. Jeribi, The weyl essential spectrum of a sequence of linear operators in Banach spaces, Indag. Math., New Ser. 27 (1) (2016), 282-295.
  2. S. Goldberg, Perturbations of semi-Fredholm operators by operators converging to zero compactly, Proc. Amer. Math. Soc. 45 (1974), 93-98.
  3. A. Jeribi, Spectral Theory and Applications of Linear Operators and Block Operator Matrices. Springer-Verlag,New York, 2015.
  4. A. Jeribi and N. Moalla, A characterisation of some subsets of Schechter's essential spectrum and applications to singular transport equation, J. Math. Anal. Appl. 358 (2) (2009), 434-444.
  5. A.Jeribi, Une nouvelle caractrisation du spectre essentiel et application, Comp Rend.Acad.Paris serie I, 331 (2000),525-530.
  6. T. Kato, Perturbation theory for linear operators, Second edition. Grundlehren der Mathematischen Wissenschaften, Band 132. Springer-Verlag, Berlin-New York, 1966.
  7. K. Latrach, A. Jeribi, Some results on Fredholm operators, essential spectra, and application, J. Math. Anal. Appl. 225 (1998), 461-485.
  8. M. Schechter, Principles of Functional Analysis, Grad. Stud. Math. vol. 36, Amer. Math. Soc., Providence, 2002.
  9. M. Schechter, Riesz operators and Fredholm perturbations, Bull. Amer. Math. Soc. 74 (1968), 1139-1144.