On Generalized Local Property of $|A;\delta|_{k}$-Summability of Factored Fourier Series
Main Article Content
Abstract
The convergence of Fourier series of a function at a point depends upon the behaviour of the function in the neighborhood of that point and it leads to the local property of Fourier series. In the proposed paper a new result on local property of $|\mathcal{A};\delta|_{k}$-summability of factored Fourier series has been established that generalizes a theorem of Sarig\"{o}l [13] (see [M. A. Sari\"{o}gol, On local property of $|\mathcal{A}|_{k}$-summability of factored Fourier series, \textit{J. Math. Anal. Appl.} 188 (1994), 118-127]) on local property of $|\mathcal{A}|_{k}$-summability of factored Fourier series.
Article Details
References
- S. N. Bhatt, An aspect of local property of |R,log,1| summability of the factored Fourier series, Proc. Natl. Inst. India 26 (1960), 69-73.
- H. Bor, A note on local property of factored Fourier series, J. Non. Anal. 64 (2006), 513-517.
- H. Bor, Local property of | ¯ N,p n | k -summability of factored Fourier series, Bull. Inst. Math. Acad. Sinica 17 (1989), 165-170.
- H. Bor, On the local property of | ¯ N,p n | k -summability of factored Fourier series, J. Math. Anal. 163 (1992), 220-226.
- Deepmala, Piscoran Laurian-Ioan, Approximation of signals (functions) belonging to certain Lipschitz classes by almost Riesz means of its Fourier series, J. Inequal. Appl. 2016 (2016), Art. ID 163.
- T. M. Fleet, On an extension of absolute summability and some theorems of Littlewood and paley, Proc. London Math. Soc. 37 (1957), 113-141.
- K. Matsumoto, Local property of the summability |R,p n ,1|, Tohoku Math. J 8 (1956), 114-124.
- K. N. Mishra, Multipliers for | ¯ N,p n |-summability of Fourier series, Bull.Inst. Math. Acad. Sinica 14 (1984), 431-438.
- V. N. Mishra, Some Problems on Approximations of Functions in Banach Spaces, Ph.D. Thesis (2007), Indian Institute of Technology, Roorkee 247 667, Uttarakhand, India.
- V. N. Mishra, L. N. Mishra, Trigonometric Approximation of Signals (Functions) in L p (p ≥ 1)- norm, Int. J. Contem. Math. Sci. 7 (2012), 909-918.
- V. N. Mishra, S. K. Paikray, P. Palo, P. N. Samanta, M. Misra, U. K. Misra, On double absolute factorable matrix summability, Tbilisi Math. J. 10 (2017), 29-44.
- R. Mohanty, On the summability |R,logw,1| of Fourier series, J. London Math. soc. 25 (1950), 67-72.
- M. A. Sariögol, On local property of |A| k -summability of factored Fourier series, J. Math. Anal. Appl. 188 (1994), 118-127.
- W. T. Sulaiman, On local property of absolute weighted mean summability of Fourier series, Bull. Math. Anal. Appl. 4 (2011), 163-168.
- D. S Yu and P. Zhou, A new class of matrices and its applications to absolute summability factor theorems, Math. Comput. Model. 57 (2013), 401-412.
- E. C. Tichmarsh, The Theory of Functions, Oxford University Press, London, (1961).
- A. Zygmund, Trigonometric series, vol. I, Cambridge Univ. Press, Cambridge, (1959).