Ideal Convergent Sequence Spaces with Respect to Invariant Mean and a Musielak-Orlicz Function Over n-Normed Spaces

Main Article Content

Sunil K. Sharma

Abstract

In the present paper we defined I-convergent sequence spaces with respect to invariant mean and a Musielak-Orlicz function M = (M_k) over n-normed spaces. We also make an effort to study some topological properties and prove some inclusion relation between these spaces.

Article Details

References

  1. P. Das, P. Kostyrko, W. Wilczynski and P. Malik, I and I* convergence of double sequences, Math. Slovaca, 58 (2008), 605-620.
  2. P. Das and P.Malik, On the statistical and I- variation of double sequences, Real Anal. Exch. 33 (2)(2007-2008), 351-364.
  3. S. G ¨ahler, Linear 2-normietre Rume, Math. Nachr., 28 (1965), 1-43.
  4. H. Gunawan, On n-Inner Product, n-Norms, and the Cauchy-Schwartz Inequality, Sci. Math. Jap., 5 (2001), 47-54.
  5. H. Gunawan, The space of p-summable sequence and its natural n-norm, Bull. Aust. Math. Soc., 64 (2001), 137-147.
  6. H. Gunawan and M. Mashadi, On n-normed spaces, Int. J. Math. Math. Sci., 27 (2001), 631-639.
  7. E. E. Kara, M. Da ¸stan and M. ¨Ilkhan, On almost ideal convergence with respect to an Orlicz function, Konuralp J. Math. 4 (2016), 87-94.
  8. P. Kostyrko, T. Salat and W. Wilczynski, I-Convergence, Real Anal. Exch. 26 (2) (2000), 669-686.
  9. V. Kumar, On I and I* convergence of double sequences, Math. Commun., 12 (2007), 171-181.
  10. J. Lindenstrauss and L. Tzafriri, On Orlicz sequence spaces, Israel J. Math. 10(1971), 345-355.
  11. G. G. Lorentz, A contribution to the theory of divergent series, Acta Math. 80(1948), 167-190.
  12. I. J. Maddox, Spaces of strongly summable sequence, Q. J. Math; 18(1967), 345-355.
  13. L. Maligranda,Orlicz spaces and interpolation, Seminars in Mathematics 5, Polish Academy of Science, 1989.
  14. A. Misiak, n-inner product spaces, Math. Nachr. 140 (1989), 299-319.
  15. M. Mursaleen and A. Alotaibi, On I-convergence in radom 2-normed spaces, Math. Slovaca, 61(6)(2011), 933-940.
  16. M. Mursaleen, S. A. Mohiuddine and O. H. H. Edely, On ideal convergence of double sequences in intuitioistic fuzzy normed spaces, Comput. Math. Appl., 59 (2010), 603-611.
  17. M. Mursaleen and S. A. Mohiuddine, On ideal convergence of double sequences in probabilistic normed spaces, Math. Reports, 12(64)(4) (2010), 359-371.
  18. M. Mursaleen and S. A. Mohiuddine, On ideal convergence in probabilistic normed spaces, Math. Slovaca, 62(2012), 49-62.
  19. M. Mursaleen and S. K. Sharma, Spaces of ideal convergent sequences, World Sci. J. 2014(2014), Art. ID 134534.
  20. J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Mathematics, Springer-Verlag Berlin Heidelberg, (1983).
  21. K. Raj and S. K. Sharma, Ideal convergent sequence spaces defined by a Musielak-Orlicz function, Thai. J. Math., 11 (2013), 577-587.
  22. K. Raj and S. K. Sharma, Some sequence spaces in 2-normed spaces defined by Musielak-Orlicz functions, Acta Univ. Sapientiae Math., 3 (2011), 97-109.
  23. K. Raj and S. K. Sharma, Some generalized difference double sequence spaces defined by a sequence of Orlicz-function, Cubo, 14 (2012), 167-189.
  24. K. Raj and S. K. Sharma, Some multiplier sequence spaces defined by a Musielak-Orlicz function in n-normed spaces, N. Z. J. Math. 42 (2012), 45-56.
  25. A. S ¸ahiner, M. G ¨urdal, S. Saltan and H. Gunawan, On ideal convergence in 2-normed spaces, Taiwanese J. Math., 11 (2007), 1477-1484.
  26. P. Schaefer, Invariant matrices and invariant means, Proc. Amer. Math. Soc.; 36(1972), 104-110.
  27. B. C. Tripathy and B. Hazarika, Some I-convergent sequence spaces defined by Orlicz functions, Acta Math. Appl. Sin. Engl. Ser. 27 (2011), 149-154.