Permanently Weak Amenability of Rees Semigroup Algebras
Main Article Content
Abstract
In this paper, we consider n-weak amenability of full matrix algebras and we prove that the Rees semigroup algebra is permanently weakly amenable.
Article Details
References
- R. Alizadeh and G. Esslamzadeh, The structure of derivations from a full matrix algebra into its dual, Iranian J. Sci. Tec, Trans. A, 32(2008), 61-64.
- T. D. Blackmore, Weak amenability of discrete semigroup algebras, Semigroup Forum, 55(1997), 196-205.
- S. Bowling and J. Duncan, First order cohomology of Banach semigroup algebras, Semigroup Forum, 56(1998), 130-145.
- Y. Choi, F. Ghahramani, Y. Zhang, Approximate and pseudo-amenability of various classes of Banach algebras, J. Funct. Anal., 256(2009), 3158-3191.
- H. G. Dales, F. Ghahramani and N. Grønbæk, Derivatios into iterated duals of Banach algebras, Studia Math., 128(1)(1998), 19-54.
- H. G. Dales, A. T-M. Lau and D. Strauss, Banach algebras on semigroups and their compactifications, Memoirs Amer. Math. Soc., 205, American Mathematical Society, Providence, 2010.
- B. E. Johnson, Weak amenability of group algebras, Bull. London Math. Soc., 23(1991), 281-284.
- O. T. Mewomo, On n-weak amenability of Rees semigroup algebras, Proc. Indian Acad. Sci., 118(4)(2008), 547-555.
- Y. Zhang, 2m-Weak amenability of group algebras, J. Math. Anal. Appl., 396(2012), 412-416.