Q_K-Type Spaces of Quaternion-Valued Functions

Main Article Content

M.A. Bakhit

Abstract

In this paper we develop the necessary tools to generalize the Q_K-type function classes to the case of the monogenic functions defined in the unit ball of R^3, some important basic properties of these functions are also considered. Further, we show some relations between Q_K(p,q) and α-Bloch spaces of quaternion-valued functions.

Article Details

References

  1. M.A. Bakhit, QKclasses in Clifford analysis, Turk. J. Anal. Number Theory, 4(3) (2016), 82-86.
  2. F. Brackx, R. Delanghe and F. Sommen, Clifford Analysis, Pitman Research Notes in Math. Boston, London, Melbourne, 1982.
  3. M. Essen and H. Wulan, On analytic and meromorphic functions and spaces of QK-type, Illinois J. Math. 46 (2002), 1233-1258.
  4. K. Gürlebeck, U. Kähler, M. Shapiro, and L.M. Tovar, On Qp spaces of quaternion-valued functions, Complex Variables Theory Appl. 39 (1999), 115-135.
  5. K. Gürlebeck and H.R. Malonek, On strict inclusions of weighted Dirichlet spaces of monogenic functions, Bull. Austral. Math. Soc. 64 (2001), 33-50.
  6. K. Gürlebeck and W. Sprössig, Quaternion and Clifford calculus for engineers and physicists, John Wiley &. Sons, Chich- ester, 1997.
  7. X. Meng, Some sufficient conditions for analytic functions to belong to QK,0(p,q) space, Abstr Appl. Anal. 2008 (2008), Article ID 404636.
  8. A.G. Miss, L.F. Resndis, L.M. Tovar, Quaternion F(p,q,s) function spaces, Complex Anal. Oper. Theory 9 (2015), 999- 1024.
  9. L.F. Reséndis and L.M. Tovar, Besov-type characterizations for Quaternion Bloch functions, In: Le Hung Son et al (Eds) finite or infinite complex Analysis and its applications, Adv. Complex Analysis and applications, Boston MA: Kluwer Academic Publishers (2004), 207-220.
  10. J. Ryan, Conformally covariant operators in Clifford analysis, Z. Anal. Anwend. 4(4) (1995), 677-704.
  11. A. Sudbery, Quaternion analysis, Math. Proc. Cambridge Philos. Soc. 85 (1979), 199-225.
  12. H. Wulan and J. Zhou, QKtype spaces of analytic functions, J. Funct. Spaces Appl. 4(1) (2006), 37-84.