Q_K-Type Spaces of Quaternion-Valued Functions
Main Article Content
Abstract
In this paper we develop the necessary tools to generalize the Q_K-type function classes to the case of the monogenic functions defined in the unit ball of R^3, some important basic properties of these functions are also considered. Further, we show some relations between Q_K(p,q) and α-Bloch spaces of quaternion-valued functions.
Article Details
References
- M.A. Bakhit, QKclasses in Clifford analysis, Turk. J. Anal. Number Theory, 4(3) (2016), 82-86.
- F. Brackx, R. Delanghe and F. Sommen, Clifford Analysis, Pitman Research Notes in Math. Boston, London, Melbourne, 1982.
- M. Essen and H. Wulan, On analytic and meromorphic functions and spaces of QK-type, Illinois J. Math. 46 (2002), 1233-1258.
- K. Gürlebeck, U. Kähler, M. Shapiro, and L.M. Tovar, On Qp spaces of quaternion-valued functions, Complex Variables Theory Appl. 39 (1999), 115-135.
- K. Gürlebeck and H.R. Malonek, On strict inclusions of weighted Dirichlet spaces of monogenic functions, Bull. Austral. Math. Soc. 64 (2001), 33-50.
- K. Gürlebeck and W. Sprössig, Quaternion and Clifford calculus for engineers and physicists, John Wiley &. Sons, Chich- ester, 1997.
- X. Meng, Some sufficient conditions for analytic functions to belong to QK,0(p,q) space, Abstr Appl. Anal. 2008 (2008), Article ID 404636.
- A.G. Miss, L.F. Resndis, L.M. Tovar, Quaternion F(p,q,s) function spaces, Complex Anal. Oper. Theory 9 (2015), 999- 1024.
- L.F. Reséndis and L.M. Tovar, Besov-type characterizations for Quaternion Bloch functions, In: Le Hung Son et al (Eds) finite or infinite complex Analysis and its applications, Adv. Complex Analysis and applications, Boston MA: Kluwer Academic Publishers (2004), 207-220.
- J. Ryan, Conformally covariant operators in Clifford analysis, Z. Anal. Anwend. 4(4) (1995), 677-704.
- A. Sudbery, Quaternion analysis, Math. Proc. Cambridge Philos. Soc. 85 (1979), 199-225.
- H. Wulan and J. Zhou, QKtype spaces of analytic functions, J. Funct. Spaces Appl. 4(1) (2006), 37-84.