Global Uniqueness Result for Functional Differential Equations Driven by a Wiener Process and Fractional Brownian Motion
Main Article Content
Abstract
We prove a global existence and uniqueness result for the solution of a mixed stochastic functional differential equation driven by a Wiener process and fractional Brownian motion with Hurst index H > 1/2. We also study the dependence of the solution on the initial condition.
Article Details
References
- L. Coutin, Z. Qian, Stochastic analysis, rough path analysis and fractional Brownian motions. Probab. Theory Related Fields 122 (2002) 108-140.
- L. Decreusefond, A. S. Ust ¨unel, Stochastic analysis of the fractional Brownian motion. Po- ¨ tential Anal. 10 (1998) 177-214.
- X. Fernique, Regularit ´e des trajectoires des fonctions al ´eatoires gaussiennes, in: Ecole d' ´et ´e de Probabilit ´es de Saint-Flour, IV-1974, in: Lecture Notes in Math. 480 (1975) 1-96.
- M. Ferrante, C. Rovira, Stochastic delay differential equations driven by fractional Brownian motion with Hurst parameter H > 1/2. Bernoulli 12 (1) (2006) 85-100.
- J. Guerra, D. Nualart, Stochastic differential equations driven by fractional Brownian motion and standard Brownian motion. Stoch. Anal. App. 26 (2008) 1053-1075.
- K. Kubilius, The existence and uniqueness of the solution of the integral equation driven by fractional Brownian motion. Liet. Mat. Rink. 40, Spec. Iss. (2000) 104-110.
- Y. Mishura, Stochastic calculus for fractional Brownian motion and related processes. Springer-Verlag Berlin Heidelberg 2008.
- Y. Mishura, G. Shevchenko, Existence and uniqueness of the solution of stochastic differential equation involving wiener process and fractional Brownian motion with Hurst index H > 1/2. Comm. Stat. Theo. Meth., 40 (2011) 3492-3508.
- Y. Mishura, S.V. Posashkova, Stochastic differential equations driven by a Wiener process and fractional Brownian motion: Convergence in Besov space with respect to a parameter. J.Camwa 62 (2011) 1166-1180.
- Y. Mishura, Quasi-linear stochastic differential equations with fractional Brownian component. Theory Probab. Math. Stat. 68 (2004) 103-116.
- D. Nualart, A. R˘a ¸scanu, Differential equations driven by fractional Brownian motion. Collect. Math. 53 (2002) 55-81.
- D.W. Stroock, S.R.S. Varadhan, Multidimensional diffusion processes. Grundlehren der Mathematischen Wissenschaften, 233. Springer-Verlag, Berlin-New York, 1979.
- M. Z ¨ahle, Integration with respect to fractal functions and stochastic calculus I. Prob. Theory Relat. Fields 111 (1998) 333-374.