Global Uniqueness Result for Functional Differential Equations Driven by a Wiener Process and Fractional Brownian Motion

Main Article Content

Toufik Guendouzi, Soumia Idrissi

Abstract

We prove a global existence and uniqueness result for the solution of a mixed stochastic functional differential equation driven by a Wiener process and fractional Brownian motion with Hurst index H > 1/2. We also study the dependence of the solution on the initial condition.

Article Details

References

  1. L. Coutin, Z. Qian, Stochastic analysis, rough path analysis and fractional Brownian motions. Probab. Theory Related Fields 122 (2002) 108-140.
  2. L. Decreusefond, A. S. Ust ¨unel, Stochastic analysis of the fractional Brownian motion. Po- ¨ tential Anal. 10 (1998) 177-214.
  3. X. Fernique, Regularit ´e des trajectoires des fonctions al ´eatoires gaussiennes, in: Ecole d' ´et ´e de Probabilit ´es de Saint-Flour, IV-1974, in: Lecture Notes in Math. 480 (1975) 1-96.
  4. M. Ferrante, C. Rovira, Stochastic delay differential equations driven by fractional Brownian motion with Hurst parameter H > 1/2. Bernoulli 12 (1) (2006) 85-100.
  5. J. Guerra, D. Nualart, Stochastic differential equations driven by fractional Brownian motion and standard Brownian motion. Stoch. Anal. App. 26 (2008) 1053-1075.
  6. K. Kubilius, The existence and uniqueness of the solution of the integral equation driven by fractional Brownian motion. Liet. Mat. Rink. 40, Spec. Iss. (2000) 104-110.
  7. Y. Mishura, Stochastic calculus for fractional Brownian motion and related processes. Springer-Verlag Berlin Heidelberg 2008.
  8. Y. Mishura, G. Shevchenko, Existence and uniqueness of the solution of stochastic differential equation involving wiener process and fractional Brownian motion with Hurst index H > 1/2. Comm. Stat. Theo. Meth., 40 (2011) 3492-3508.
  9. Y. Mishura, S.V. Posashkova, Stochastic differential equations driven by a Wiener process and fractional Brownian motion: Convergence in Besov space with respect to a parameter. J.Camwa 62 (2011) 1166-1180.
  10. Y. Mishura, Quasi-linear stochastic differential equations with fractional Brownian component. Theory Probab. Math. Stat. 68 (2004) 103-116.
  11. D. Nualart, A. R˘a ¸scanu, Differential equations driven by fractional Brownian motion. Collect. Math. 53 (2002) 55-81.
  12. D.W. Stroock, S.R.S. Varadhan, Multidimensional diffusion processes. Grundlehren der Mathematischen Wissenschaften, 233. Springer-Verlag, Berlin-New York, 1979.
  13. M. Z ¨ahle, Integration with respect to fractal functions and stochastic calculus I. Prob. Theory Relat. Fields 111 (1998) 333-374.