Donoho-Stark Uncertainty Principle Associated with a Singular Second-Order Differential Operator

Main Article Content

Fethi Soltani

Abstract

For a class of singular second-order differential operators ∆, we prove a continuous-time principles for L1theory and L2theory, respectively. Another version of continuous-time principle using L1∩L2 theory is given.

Article Details

References

  1. L. Bouattour and K. Trimeche, Beurling-H ¨ormander's theorem for the Chebli-Trimeche transform,Glob. J. Pure Appl. Math. 1(3) (2005) 342-357
  2. H. Ch ´ebli, Th ´eor`eme de Paley-Wiener associ??un op ´erateur diff ´erentiel singulier sur (0, ∞), J. Math. Pures Appl. 58(1) (1979) 1-19.
  3. R. Daher, An analog of Titchmarsh's theorem of Jacobi transform, Int. J. Math. Anal. 6(20)(2012) 975 -981.
  4. R. Daher and T. Kawazoe, Generalized of Hardy's theorem for Jacobi transform, HiroshimaJ. Math. 36(3) (2006) 331-337.
  5. R. Daher and T. Kawazoe, An uncertainty principle on Sturm-Liouville hypergroups, Proc.Japan Acad. 83 Ser. A (2007) 167-169.
  6. R. Daher, T. Kawazoe and H. Mejjaoli, A generalization of Miyachi's theorem, J. Math. Soc.Japan 61(2) (2009) 551-558.
  7. D.L. Donoho and P.B. Stark, Uncertainty principles and signal recovery, SIAM J. Appl. Math.49(3) (1989) 906-931.
  8. C.L. Fefferman, The uncertainty principle, Bull. Amer. Math. Soc. 9 (1983) 129-206.
  9. D. Gabor, Theory of communication, J. Inst. Elec. Engrg. 93 (1946) 429-457.
  10. W. Heisenberg, The Physical Principles of the Quantum Theory, Dover, NewYork, 1949 (TheUniversity of Chicago Press, 1930).
  11. R. Ma, Heisenberg inequalities for Jacobi transforms, J. Math. Anal. Appl. 332 (2007) 155-163.
  12. R. Ma, Heisenberg uncertainty principle on Ch ´ebli-Trim`eche hypergroups, Pacific J. Math.235(2) (2008) 289-296.
  13. M.M. Nessibi, L.T. Rachdi and K. Trim`eche, The local central limit theorem on the productof the Ch ´ebli-Trim`eche hypergroup and the Euclidean hypergroup Rn, J. Math. Sci. (Calcutta)9(2) (1998) 109-123.
  14. M. Rosler and M. Voit, An uncertainty principle for Hankel transforms, Proc. Amer. Math.Soc. 127(1) (1999) 183-194.
  15. K. Trimeche, Transformation int ´egrale de Weyl et theoreme de Paley-Wiener associes unoperateur diff ´erentiel singulier sur (0, ∞), J. Math. Pures Appl. 60(1) (1981) 51-98.
  16. K. Trimeche, Inversion of the Lions transmutation operators using generalized wavelets, Appl. Comput. Harmon. Anal. 4(1) (1997) 97-112.
  17. Z. Xu, Harmonic analysis on Ch ´ebli-Trim`eche hypergroups, Ph.D. thesis, Murdoch University, Perth, Western Australia, 1994.
  18. H. Zeuner, The central limit theorem for Ch ´ebli-Trim`eche hypergroups, J. Theoret. Probab. 2(1) (1989) 51-63.