On the Behavior near the Origin of a Sine Series with Coefficients of Monotone Type

Main Article Content

Xhevat Z. Krasniqi

Abstract

In this paper we have obtained some asymptotic equalities of the sum function of a trigonometric sine series expressed in terms of its special type of coefficients.

Article Details

References

  1. A. Yu. Popov, Estimates for the sums of sine series with monotone coefficients of certain classes, (Russian) Mat. Zametki 74 (2003), no. 6, 877-888; translation in Math. Notes 74 (2003), no. 5-6, 829-840.
  2. B. V. Simonov, On trigonometric series with (k, s)-monotone coefficients in weighted spaces, Izv. Vyssh. Uchebn. Zaved., Mat. 2003, no. 5, 42-54.
  3. R. Salem, D ´etermination de l'ordre de grandeur ´a l'origine de certains s ´eries trigonometriques, C. R. Acad. Sci. Paris 186 (1928), 1804-1806.
  4. R. Salem, Essais sur les series trigonometriques, Paris, 1940.
  5. S. Aljanci ˇ c, R. Bojani ´ c ´ and M. Tomic ´, Sur le comportement asymtotique au voisinage de z ´ero des s ´eries trigonom ´etriques de sinus ´a coefficients monotones, Publ. Inst. Math. Acad. Serie Sci., 10 (1956), 101-120.
  6. S. A. Telyakovski˘i, On the behavior near the origin of the sine series with convex coefficients, Publ. Inst. Math. Nouvelle serie, 58 (72) (1995), 43-50.
  7. Xh. Z. Krasniqi, Certain estimates for double sine series with multiple-monotone coefficients, Acta Math. Acad. Paedagog. Nyh ´azi. (N.S.) 27 (2011), no. 2, 233-243.
  8. Xh. Z. Krasniqi, On the behavior near the origin of double sine series with monotone coef- ficients. Math. Bohem. 134 (2009), no. 3, 255-273.
  9. Xh. Z. Krasniqi, Some estimates of r-th derivative of the sums of sine series with monotone coefficients of higher order near the origin. Int. J. Math. Anal. (Ruse) 3 (2009), no. 1-4, 59-69.
  10. Xh. Z. Krasniqi, N. L. Braha, On the behavior of r-derivative near the origin of sine series with convex coefficients. JIPAM. J. Inequal. Pure Appl. Math. 8 (2007), no. 1, Article 22, 6 pp. (electronic).
  11. W. H. Young, On the mode of oscillation of a Fourier series and of its allied series, Proc. London Math. Soc. 12 (1913), 433-452.
  12. N. Bary, Trigonometric series, Moscow, 1961 (in Russian).