Lacunary I_2-Invariant Convergence and Some Properties
Main Article Content
Abstract
In this paper, the concept of lacunary invariant uniform density of any subset $A$ of the set $\mathbb{N}\times\mathbb{N}$ is defined. Associate with this, the concept of lacunary $\mathcal{I}_2$-invariant convergence for double sequences is given. Also, we examine relationships between this new type convergence concept and the concepts of lacunary invariant convergence and $p$-strongly lacunary invariant convergence of double sequences. Finally, introducing lacunary $\mathcal{I}_2^*$-invariant convergence concept and lacunary $\mathcal{I}_2$-invariant Cauchy concepts, we give the relationships among these concepts and relationships with lacunary $\mathcal{I}_2$-invariant convergence concept.
Article Details
References
- P. Das, P. Kostyrko, W. Wilczy ´ nski and P. Malik, I and I*-convergence of double sequences, Math. Slovaca, 58(5) (2008), 605-620.
- E. Dündar and B. Altay, I2-convergence and I2-Cauchy of double sequences, Acta Math. Sci., 34B(2) (2014), 343-353.
- E. Dündar, U. Ulusu and F. Nuray, On ideal invariant convergence of double sequences and some properties, Creat. Math. Inf., 27(2) (2018), (in press).
- J. A. Fridy and C. Orhan, Lacunary statistical convergence, Pacific J. Math., 160(1) (1993), 43-51.
- P. Kostyrko, T.ˇSalát and W. Wilczy ´ nski, I-Convergence, Real Anal. Exchange, 26(2) (2000), 669-686.
- V. Kumar, On I and I*-convergence of double sequences, Math. Commun. 12 (2007), 171-181.
- S. A. Mohiuddine and E. Sava ¸s, Lacunary statistically convergent double sequences in probabilistic normed spaces, Ann Univ. Ferrara, 58 (2012), 331-339.
- M. Mursaleen, Matrix transformation between some new sequence spaces, Houston J. Math., 9 (1983), 505-509.
- M. Mursaleen, On finite matrices and invariant means, Indian J. Pure Appl. Math., 10 (1979), 457-460.
- M. Mursaleen and O. H. H. Edely, On the invariant mean and statistical convergence, Appl. Math. Lett., 22(11) (2009), 1700-1704.
- A. Nabiev, S. Pehlivan and M. Gürdal, On I-Cauchy sequences, Taiwanese J. Math., 11(2) (2007), 569-576.
- F. Nuray, H. Gök and U. Ulusu, Iσ-convergence, Math. Commun. 16 (2011) 531-538.
- N. Pancaroˇglu and F. Nuray, Statistical lacunary invariant summability, Theor. Math. Appl., 3(2) (2013), 71-78.
- A. Pringsheim, Zur theorie der zweifach unendlichen Zahlenfolgen, Math. Ann., 53 (1900), 289?21.
- R. A. Raimi, Invariant means and invariant matrix methods of summability, Duke Math. J., 30(1) (1963), 81-94.
- E. Sava ¸s, Some sequence spaces involving invariant means, Indian J. Math., 31 (1989), 1-8.
- E. Sava ¸s, Strongly σ-convergent sequences, Bull. Calcutta Math., 81 (1989), 295-300.
- E. Sava ¸s and R. Patterson, Double σ-convergence lacunary statistical sequences, J. Comput. Anal. Appl., 11(4) (2009).
- P. Schaefer, Infinite matrices and invariant means, Proc. Amer. Math. Soc., 36 (1972), 104-110.
- U. Ulusu and F. Nuray, Lacunary Iσ-convergence, (under review).