Coefficient Estimates of Meromorphic Bi- Starlike Functions of Complex Order
Main Article Content
Abstract
In the present investigation, we define a new subclass of meromorphic bi-univalent functions class Σ' of complex order γ ∈ C\{0}, and obtain the estimates for the coefficients |b0| and |b1|. Further we pointed out several new or known consequences of our result.
Article Details
References
- D.A. Brannan, J.G. Clunie (Eds.), Aspects of Contemporary Complex Analysis (Proceedings of the NATO Advanced Study Institute held at the University of Durham, Durham; July 1-20, 1979), Academic Press, New York and London, 1980.
- D.A. Brannan, T.S. Taha, On some classes of bi-univalent functions, in: S.M. Mazhar, A. Hamoui, N.S. Faour (Eds.), Mathematical Analysis and its Applications, Kuwait; February 18-21, 1985, in: KFAS Proceedings Series, vol. 3, Pergamon Press, Elsevier Science Limited, Oxford, 1988, 53-60. see also Studia Univ. Babe ´s-Bolyai Math. 31 (2) (1986) 70-77.
- P. L. Duren, Coefficients of meromorphic schlicht functions, Proceedings of the American Mathematical Society, vol. 28, 169-172, 1971.
- E. Deniz, Certain subclasses of bi-univalent functions satisfying subordinate conditions, Journal of Classical Analysis 2(1) (2013), 49-60.
- S. G. Hamidi,S. A. Halim ,Jay M. Jahangiri,Coefficent estimates for bi-univalent strongly starlike and Bazilevic functions, International Journal of Mathematics Research. Vol. 5, No. 1 (2013), 87-96.
- G. P. Kapoor and A. K. Mishra, Coefficient estimates for inverses of starlike functions of positive order,Journal of Mathematical Analysis and Applications, vol. 329, no. 2, 922-934, 2007.
- Y. Kubota, Coefficients of meromorphic univalent functions, K ¯odai Math. Sem. Rep. 28 (1976/77), no. 2-3, 253-261.
- M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc. 18 (1967) 63-68.
- W.C. Ma, D. Minda, A unified treatment of some special classes of functions, in: Proceedings of the Conference on Complex Analysis, Tianjin, 1992, 157 - 169, Conf. Proc.Lecture Notes Anal. 1. Int. Press, Cambridge, MA, 1994.
- E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in |z| < 1, Arch. Rational Mech. Anal. 32 (1969) 100-112.
- C. Pommerenke, Univalent Functions, Vandenhoeck & Ruprecht, G ¨ottingen, 1975.
- G. Schober, Coefficients of inverses of meromorphic univalent functions, Proc. Amer. Math. Soc. 67 (1977), no. 1, 111-116.
- M. Schiffer, Sur un probl ´eme dextr ´emum de la repr ´esentation conforme, Bull. Soc. Math. France 66 (1938), 48-55.
- G. Springer, The coefficient problem for schlicht mappings of the exterior of the unit circle, Trans. Amer. Math. Soc. 70 (1951), 421-450.
- H.M. Srivastava, A.K. Mishra, P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 23 (2010) 1188-1192.
- H. M. Srivastava, A. K. Mishra, and S. N. Kund, Coefficient estimates for the inverses of starlike functions represented by symmetric gap series, Panamerican Mathematical Journal, vol. 21, no. 4, 105-123, 2011.
- T.S. Taha, Topics in univalent function theory, Ph.D. Thesis, University of London, 1981.
- Q.-H. Xu, Y.-C. Gui and H. M. Srivastava, Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett. 25 (2012), 990-994.
- Q.-H. Xu, H.-G. Xiao and H. M. Srivastava, A certain general subclass of analytic and biunivalent functions and associated coefficient estimate problems, Appl. Math. Comput. 218 (2012), 11461-11465.
- Q-H. Xu , Chun-Bo Lv , H.M. Srivastava Coefficient estimates for the inverses of a certain general class of spirallike functions Appl. Math. Comput. 219 (2013) 7000-7011.