Analytic Functions Related with Mocanu Class

Main Article Content

Akhter Rasheed, Saqib Hussain, Muhammad Asad Zaighum, Zahid Shareef

Abstract

In this article, we define a new class of analytic functions. This class generalizes the mocanu class. We obtain relationships of this class with other subclasses of analytic functions and derived many interesting results.

Article Details

References

  1. J. W. Alexander, Functions which map the interior of the unit circle upon simple regions, Ann. Math., 17(1915), 12-22.
  2. M. Arif, A. Ali and J. Muhammad, Some sufficient conditions for alpha convex functions of order beta, VFAST Trans. Math., 1(2)(2013), 8-12.
  3. D. A. Brannan and W. E. Kirwan, On some classes of bounded univalent functions, J. London Math. Soc., 1(2)(1969), 431-443.
  4. J. Dziok, Characterizations of analytic functions associated with functions of bounded variation, Ann. Polon. Math., 109(2013), 199-207.
  5. J. Dziok, Classes of functions associated with bounded Mocanu variation, J. Inequal. Appl., 2013, Article ID 349.
  6. J. Dziok, Generalizations of multivalent Mocanu functions, Appl. Math. Computation., 269(2015), 965-971.
  7. A. W. Goodman, On uniformly convex functions, Ann. Polon. Math., 56(1991), 87-92.
  8. S. Kanas and A. Wi ´sniowska, Conic regions and k-uniform convexity II, Folia Sci. Univ. Tech. Resov., 22(1998), 65-78.
  9. S. Kanas and A. Wi ´sniowska, Conic regions and k-uniform convexity, J. Comput. Appl. Math., 105(1999), 327-336.
  10. S. Kanas and H. M. Srivastava, Linear operators associated with k-uniformly convex functions, Integral Transform. Spec.Funct., 9(2)(2000), 121-132.
  11. A. Lecko and A. Wi ´sniowska, Geometric properties of subclasses of starlike functions, J. Comp. Appl. Math., 155(2003), 383-387.
  12. X. Li, D. Ding, L. Xu, C. Qin and S. Hu, J. Funt. Spac, Certain Subclasses of Multivalent Functions Defined by HigherOrder Derivative., 2017, Article ID 5739196.
  13. W. Ma and D. Minda, Uniformly convex functions, Ann. Polon. Math., 2(57)(1992), 165-175.
  14. W. Ma and D. Minda, Uniformly convex functions II, Ann. Polon. Math., 3(58)(1993), 275-285.
  15. P. T. Mocanu, Une propri ´et ´e de convexit ´e g ´en ´eralis ´ee dans la th ´eorie de la repr ´esentation conforme. Mathematica (Cluj, 1929) 11(34)(1969), 127-133.
  16. S. S. Miller, Differential inequalities and Carath ´eodory functions, Bull. Amer. Math. Soc., 81(1975), 79 - 81.
  17. S. S. Miller and P. T. Mocanu, Univalent solutions of Briot-Bouquet differential subordination, J. Differential Eqns., 56(1985), 297-309.
  18. K. I. Noor and W. Ul-Haq, On some implication type results involving generalized bounded Mocanu variations, Comput. Math. Appl., 63(10)(2012), 1456-1461.
  19. K. I. Noor and S. Hussain, On certain analytic functions associated with Ruscheweyh derivatives and bounded Mocanu variation, J. Math. Anal. Appl., 340(2008), 1145-1152.
  20. K. I. Noor and A. Muhammad, On analytic functions with generalized bounded Mocanu variation, Appl. Math. Comput., 196(2) (2008), 802-811.
  21. K. I. Noor and S. N. Malik, On generalized bounded Mocanu variation associated with conic domain, Math. Comput. Model., 55(2012), 844-852.
  22. M. Nunokawa and J. Sokol, Remarks on some starlike functions, J. Inequal. Appl., 593(2013), 1-8.
  23. M. Nunokawa, On the order of strongly starlikeness of strongly convex functions, Proc. Japan Acad. Ser. A., 69(7)(1993), 234-237.
  24. M. Nunokawa, J. Sok ´o l, On order of strongly starlikeness in the class of uniformly convex functions, Math. Nachr., (2015), 1-6..
  25. J. Sok ´o l and M. Nunokawa, On some class of convex functions, C. R. Acad. Sci. Paris, Ser. I., 353(2015), 427-431.
  26. J. Soko l and A.Wi ´sniowska, On some classes of starlike functions related with parabola, Folia Sci. Univ. Tech. Resov., 28 (1993), 35-42.
  27. J. Stankiewicz, Quelques probl ´emes extr ´emaux dans les classes des fonctions α-angulairement ´etoil ´ees, Ann. Univ. Mariae Curie-Sk lodowska, Sect. A., 20(1966), 59-75.
  28. E. T. Whittaker and G. N. Watson, A course of modern analysis, 4th ed. Cambridge Univ. Press., 1958.
  29. D. R. Wilken and J. Feng, A remark on convex and starlike functions, J. London Math. Soc., 21(1980)., 287-290.
  30. A. Wi ´sniowska Wajnryb, Some extremal bounds for subclasses of univalent functions, Appl. Math. Comput,. 215(2009), 2634-2641.