Generalized (h,r)-Harmonic Convex Functions and Inequalities

Main Article Content

Muhammad Aslam Noor, Khalida Inayat Noor, Sabah Iftikhar, Farhat Safdar

Abstract

The main aim of this paper is to introduce a new class of harmonic convex functions with respect to non-negative function h, which is called generalized (h,r)-harmonic convex functions. We derive some new Fejer-Hermite-Hadamard type inequalities for generalized harmonic convex functions. Some special cases are also discussed. The ideas and techniques of this paper may stimulate further research.

Article Details

References

  1. G. D. Anderson, M. K. Vamanamurthy and M. Vuorinen. Generalized convexity and inequalities. J. Math. Anal. Appl., 335(2007), 1294-1308.
  2. G. Cristescu and L. Lupsa. Non-connected Convexities and Applications. Kluwer Academic Publisher, Dordrechet, Holland, (2002).
  3. M. R. Delavar and S. S. Dragomir, On η-convexity, Math. Inequal. Appl., 20(1), 203-216.
  4. M. E. Gordji, M. R. Delavar and M. De La Sen, On φ-convex functions, J. Math. Inequal., 10(1)(2016), 173-183.
  5. M. E. Gordji, S. S. Dragomir and M. R. Delavar, An inequality related to η-convex functions (II), Int. J. Nonlinear Anal. Appl., 6(2)(2015), 26-32.
  6. J. Hadamard. Etude sur les proprietes des fonctions entieres e.t en particulier dune fonction consideree par Riemann. J. Math. Pure Appl., 58(1893), 171-215.
  7. L. V. Hap and N. V. Vinh, On some Hadamard-type inequalities for (h,r)-convex functions, Int. J. Math. Anal., 7(42)(2013), 2067 - 2075.
  8. C. Hermite, Sur deux limites dune integrale definie. Mathesis, 3(1883), 82.
  9. I, Iscan. Hermite-Hadamard type inequalities for harmonically convex functions. Hacettepe, J. Math. Stats., 43(6)(2014), 935-942.
  10. M. A. Latif, S.S. Dragomir and E. Momoniat. Some Fejer type inequalities for harmonically convex functions with appli- cations to special means, Int. J. Anal. Appl., 13(1)(2017), 1-14
  11. M. V. Mihai, M. A. Noor, K. I. Noor and M. U. Awan. Some integral inequalities for harmonically h-convex functions involving hypergeometric functions. Appl. Math. Comput., 252(2015), 257-262.
  12. N. P. N. Ngoc, N. V. Vinh and P. T. T. Hien, Integral inequalities of Hadamard type for r-Convex functions, Int. Mathe. Forum, 4(35)(2009), 1723 - 1728.
  13. C. P. Niculescu and L. E. Persson. Convex Functions and Their Applications. Springer-Verlag, New York, (2006).
  14. M. A. Noor, Advanced Convex Analysis and optimization, Lecture Notes, Mathematics Department, COMSATS Institute of Information Technology, Islamabad, Pakistan. (20015-2018).
  15. M. A. Noor, Some deveolpments in general variational inequalities, Appl. Mathh. Comput. 251(2004), 199-277.
  16. M. A. Noor, B. B. Mohsen, K. I, Noor and S. Iftikhar, Relative strongly harmonic convex functions and their characteri- zations, J. Nonlinear Sci. Appl. in press.
  17. M. A. Noor, K. I. Noor, M. U. Awan and S. Costache. Some integral inequalities for harmonically h-convex functions. U.P.B. Sci. Bull. Serai A, 77(1)(2015), 5-16.
  18. M. A. Noor, K. I. Noor and U. Awan, Some new estimates of Hermite-Hadamard inequalities via harmonically r-convex functions, Le Matematiche, 71(2)(2016), 117-127.
  19. M. A. Noor, K. I. Noor and S. Iftikhar, Some Newton's type inequalities for harmonic convex functions, J. Adv. Mathe. Stud., 9(1)(2016), 07-16.
  20. M. A. Noor, K. I. Noor and S. Iftikhar, Hermite-Hadamard inequalities for harmonic nonconvex functions, MAGNT Res. Rep., 4(1)(2016), 24-40.
  21. M. A. Noor, K. I. Noor and S. Iftikhar, Integral inequalities for differentiable relative harmonic preinvex functions(Survey), TWMS J. Pure Appl. Math., 7(1)(2016), 3-19.
  22. M. A. Noor and K. I. Noor, Harmonic variational inequalities, Appl. Math. Inform. Sci., 10(5)(2016), 1811-1814.
  23. M. A. Noor, K. I. Noor, S. Iftikhar and C. Ionescu, Hermite-Hadamard inequalities for co-ordinated harmonic convex functions, U.P.B. Sci. Bull., Ser: A, 79(1)(2017), 25-34.
  24. M. A. Noor, K. I. Noor, S. Iftikhar and F. Safdar, Integral inequalities for relative harmonic (s,η)-convex functions, Appl. Math. Comput. Sci., 1 (1) (2016), 27-34.
  25. M. A. Noor, K. I. Noor and S. Iftikhar, Some characterizations of harmonic convex functions, Int. J. Anal. Appl., 15(2)(2017), 179-187.
  26. M. A. Noor, K. I. Noor and S. Iftikhar, On harmonic (h,r)-convex functions, Proc. Jangjeon Math. Soc., 21(2)(2018), 239-251.
  27. M. A. Noor, K. I. Noor and S. Iftikhar, Inequalities via (p,r)-convex functions, Rad HAZU, Matematicke znanosti, in press.
  28. M. A. Noor, K. I. Noor and F. Safdar, Integral inequalities via generalized (α,m)-convex functions, J. Nonlinear Funct. Anal., 2017(2017), Article ID 32.
  29. M. A. Noor, K. I. Noor, F. Safdar, M. U. Awan and S. Ullah, Inequalities via generalized log m-convex functions, J. Nonlinear Sci. Appl., 10 (2017), 5789-5802.
  30. J. Park, On the Hermite-Hadamard-like type inequalities for co-ordinated (s,r)-convex mappings, Int. J. Pure Appl. Math., 74(2)(2012), 251-263.
  31. C.E.M. Pearce, J. Pecaric and V. Simic, On Weighted Generalized Logarithmic Means, Houston J. Math., 24(3)(1998), 459.
  32. M. Z. Sarikaya, H. Yaldiz and H. Bozkurt, On the Hadamard type integral inequalities involving several differentiable φ - r-convex functions, (2012), arXiv:1203.2278 [math.CA].
  33. H. N. Shi and Zhang. Some new judgement theorems of Schur geometric and Schur harmonic convexities for a class of symmetric functions. J. Inequal. Appl., 2013(2013), Art. ID 527.
  34. S. Varosanec, On h-convexity, J. Math. Anal. Appl., 326(2007), 303-311.
  35. G. S. Yang, Refinements of Hadamards inequality for r-convex functions, Indian J. Pure Appl. Math , 32(10)(2001), 1571-1579.