Generalized (h,r)-Harmonic Convex Functions and Inequalities
Main Article Content
Abstract
The main aim of this paper is to introduce a new class of harmonic convex functions with respect to non-negative function h, which is called generalized (h,r)-harmonic convex functions. We derive some new Fejer-Hermite-Hadamard type inequalities for generalized harmonic convex functions. Some special cases are also discussed. The ideas and techniques of this paper may stimulate further research.
Article Details
References
- G. D. Anderson, M. K. Vamanamurthy and M. Vuorinen. Generalized convexity and inequalities. J. Math. Anal. Appl., 335(2007), 1294-1308.
- G. Cristescu and L. Lupsa. Non-connected Convexities and Applications. Kluwer Academic Publisher, Dordrechet, Holland, (2002).
- M. R. Delavar and S. S. Dragomir, On η-convexity, Math. Inequal. Appl., 20(1), 203-216.
- M. E. Gordji, M. R. Delavar and M. De La Sen, On φ-convex functions, J. Math. Inequal., 10(1)(2016), 173-183.
- M. E. Gordji, S. S. Dragomir and M. R. Delavar, An inequality related to η-convex functions (II), Int. J. Nonlinear Anal. Appl., 6(2)(2015), 26-32.
- J. Hadamard. Etude sur les proprietes des fonctions entieres e.t en particulier dune fonction consideree par Riemann. J. Math. Pure Appl., 58(1893), 171-215.
- L. V. Hap and N. V. Vinh, On some Hadamard-type inequalities for (h,r)-convex functions, Int. J. Math. Anal., 7(42)(2013), 2067 - 2075.
- C. Hermite, Sur deux limites dune integrale definie. Mathesis, 3(1883), 82.
- I, Iscan. Hermite-Hadamard type inequalities for harmonically convex functions. Hacettepe, J. Math. Stats., 43(6)(2014), 935-942.
- M. A. Latif, S.S. Dragomir and E. Momoniat. Some Fejer type inequalities for harmonically convex functions with appli- cations to special means, Int. J. Anal. Appl., 13(1)(2017), 1-14
- M. V. Mihai, M. A. Noor, K. I. Noor and M. U. Awan. Some integral inequalities for harmonically h-convex functions involving hypergeometric functions. Appl. Math. Comput., 252(2015), 257-262.
- N. P. N. Ngoc, N. V. Vinh and P. T. T. Hien, Integral inequalities of Hadamard type for r-Convex functions, Int. Mathe. Forum, 4(35)(2009), 1723 - 1728.
- C. P. Niculescu and L. E. Persson. Convex Functions and Their Applications. Springer-Verlag, New York, (2006).
- M. A. Noor, Advanced Convex Analysis and optimization, Lecture Notes, Mathematics Department, COMSATS Institute of Information Technology, Islamabad, Pakistan. (20015-2018).
- M. A. Noor, Some deveolpments in general variational inequalities, Appl. Mathh. Comput. 251(2004), 199-277.
- M. A. Noor, B. B. Mohsen, K. I, Noor and S. Iftikhar, Relative strongly harmonic convex functions and their characteri- zations, J. Nonlinear Sci. Appl. in press.
- M. A. Noor, K. I. Noor, M. U. Awan and S. Costache. Some integral inequalities for harmonically h-convex functions. U.P.B. Sci. Bull. Serai A, 77(1)(2015), 5-16.
- M. A. Noor, K. I. Noor and U. Awan, Some new estimates of Hermite-Hadamard inequalities via harmonically r-convex functions, Le Matematiche, 71(2)(2016), 117-127.
- M. A. Noor, K. I. Noor and S. Iftikhar, Some Newton's type inequalities for harmonic convex functions, J. Adv. Mathe. Stud., 9(1)(2016), 07-16.
- M. A. Noor, K. I. Noor and S. Iftikhar, Hermite-Hadamard inequalities for harmonic nonconvex functions, MAGNT Res. Rep., 4(1)(2016), 24-40.
- M. A. Noor, K. I. Noor and S. Iftikhar, Integral inequalities for differentiable relative harmonic preinvex functions(Survey), TWMS J. Pure Appl. Math., 7(1)(2016), 3-19.
- M. A. Noor and K. I. Noor, Harmonic variational inequalities, Appl. Math. Inform. Sci., 10(5)(2016), 1811-1814.
- M. A. Noor, K. I. Noor, S. Iftikhar and C. Ionescu, Hermite-Hadamard inequalities for co-ordinated harmonic convex functions, U.P.B. Sci. Bull., Ser: A, 79(1)(2017), 25-34.
- M. A. Noor, K. I. Noor, S. Iftikhar and F. Safdar, Integral inequalities for relative harmonic (s,η)-convex functions, Appl. Math. Comput. Sci., 1 (1) (2016), 27-34.
- M. A. Noor, K. I. Noor and S. Iftikhar, Some characterizations of harmonic convex functions, Int. J. Anal. Appl., 15(2)(2017), 179-187.
- M. A. Noor, K. I. Noor and S. Iftikhar, On harmonic (h,r)-convex functions, Proc. Jangjeon Math. Soc., 21(2)(2018), 239-251.
- M. A. Noor, K. I. Noor and S. Iftikhar, Inequalities via (p,r)-convex functions, Rad HAZU, Matematicke znanosti, in press.
- M. A. Noor, K. I. Noor and F. Safdar, Integral inequalities via generalized (α,m)-convex functions, J. Nonlinear Funct. Anal., 2017(2017), Article ID 32.
- M. A. Noor, K. I. Noor, F. Safdar, M. U. Awan and S. Ullah, Inequalities via generalized log m-convex functions, J. Nonlinear Sci. Appl., 10 (2017), 5789-5802.
- J. Park, On the Hermite-Hadamard-like type inequalities for co-ordinated (s,r)-convex mappings, Int. J. Pure Appl. Math., 74(2)(2012), 251-263.
- C.E.M. Pearce, J. Pecaric and V. Simic, On Weighted Generalized Logarithmic Means, Houston J. Math., 24(3)(1998), 459.
- M. Z. Sarikaya, H. Yaldiz and H. Bozkurt, On the Hadamard type integral inequalities involving several differentiable φ - r-convex functions, (2012), arXiv:1203.2278 [math.CA].
- H. N. Shi and Zhang. Some new judgement theorems of Schur geometric and Schur harmonic convexities for a class of symmetric functions. J. Inequal. Appl., 2013(2013), Art. ID 527.
- S. Varosanec, On h-convexity, J. Math. Anal. Appl., 326(2007), 303-311.
- G. S. Yang, Refinements of Hadamards inequality for r-convex functions, Indian J. Pure Appl. Math , 32(10)(2001), 1571-1579.