Generalized r-Convex Functions and Integral Inequalities
Main Article Content
Abstract
In this paper, we introduce and investigate a new class of generalized convex functions, known as generalized $r$-convex function. Some new Hermite-Hadamard integral inequalities via generalized $r$-convex functions have been established. Results proved in this paper can be viewed as significant new contributions in this area of research.
Article Details
References
- G. D. Anderson, M. K. Vamanamurthy and M. Vuorinen, Generalized convexity and inequalities, J. Math. Anal. Appl, 335(2007),1294-1308.
- M. Alomari, M. Darus and S. S. Dragomir, New inequalities of Simpson's type for s-convex functions with applications, RGMIA Res. Rep. Coll, 12 (4) (2009).
- G. Cristescu, L. Lupsa, Non-connected Convexities and Applications, Kluwer Academic Publishers, Dordrechet, Holland, (2002).
- M. R. Delavar and S. S. Dragomir, On η-convexity, Math. Inequal. Appl., 20(1)(2017), 203-216.
- S. S. Dragomir and C. E. M. Pearce, Selected topics on Hermite-Hadamard inequalities and applications, Victoria University, Australia, (2000).
- M. E. Gordji, M. R. Delavar and M. D. Sen, On φ convex functions, J. Math. Inequal, 10(1)(2016), 173-183.
- M. E. Gordji, M. R. Delavar and S. S. Dragomir, An inequality related to η-convex functions (II), Int. J. Nonlinear. Anal. Appl, 6(2)(2015), 27-33.
- P. M. Gill, C. E. M. Pearce , J. Pecaric, Hadamards inequality for r-convex functions, J. Math. Anal. Appl, 215(1997), 461-470.
- J. Hadamard, Etude sur les proprietes des fonctions entieres e.t en particulier dune fonction consideree par Riemann, J. Math. Pure. Appl., 58(1893), 171-215.
- C. Hermite, Sur deux limites d'une integrale definie, Mathesis, 3(1883), 82.
- D. H. Hyers and S. M. Ulam, Approximately convex functions, Proc. Amer. Math. Soc, 3(1952), 821-828.
- C. P. Niculescu and L. E. Persson, Convex Functions and Their Applications. Springer-Verlag, New York, (2006).
- M. A. Noor, General variational inequalities, Appl. Math. Letters,1(1988), 119-121.
- M. A. Noor, Some develpments in general variational inequalities, Appl. Math. Comput. 152(2004), 199-277.
- M. A. Noor and K. I. Noor, Harmonic variational inequalities, Appl. Math. Inform. Sci. 10(5)(2016), 1811-1814.
- M. A. Noor and K. I. Noor, Some implicit methods for solving harmonic variational inequalities , Inter. J. Anal. Appl. 12(1)(2016), 10-14.
- M. A. Noor, K. I. Noor and M. U. Awan, Some new estimates of Hermite-Hadamard inequalities via harmonically r-convex functions, Le Mathematiche, LXXI(II)(2016), 117-127.
- M. A. Noor, K. I. Noor, M. U. Awan and F. Safdar, On strongly generalized convex functions, Filomat, 31(18)(2017), 5783-5790.
- M. A. Noor, K. I. Noor and F. Safdar, Generalized geometrically convex functions and inequalities, J. Inequal. Appl, 2017(2017), Article ID 22.
- M. A. Noor, K. I. Noor and F. Safdar, Integral inequaities via generalized convex functions, J. Math. Computer, Sci, 17(4)(2017), 465-476.
- M. A. Noor, K. I. Noor, S. Iftikhar, F. Safdar, Integral inequaities for relative harmonic (s,η)-convex functions, Appl. Math. Comp. Sci, 1(1)(2015), 27-34.
- M. A. Noor, K. I. Noor and F. Safdar, Integral inequaities via generalized (α,m)-convex functions, J. Nonlinear. Funct. Anal, 2017(2017), Article ID 32.
- M. A. Noor, K. I. Noor and F. Safdar, New inequalities for generalized log h-convexd functions, J. Appl. Math. Inform. 36(3-4)(2018), 245-256.
- M. A. Noor, K. I. Noor and F. Safdar,Inequalities via generalized beta m-convex functions, J. Math. Anal. 9((2018).
- M. A. Noor, K. I. Noor and S. Iftikhar, Inequaities via (p,r)-convex functions, RAD, (2018).
- M. A. Noor, K. I. Noor and S. Iftikhar, On harmonic (h,r)-convex functions, Proced. Jangj. Math. Soc. 21(2)(2018), 239-251.
- M. A. Noor, K. I. Noor, F. Safdar, M. U. Awan and S. Ullah, Inequaities via generalized log m-convex functions, J. Nonlinear. Sci. Appl, 10(2017), 5789-5802.
- M. A. Noor, K. I. Noor, S. Iftikhar and F. Safdar, Generalized (h,r)-harmonic convex functions and inequalities, Int. J. Math. Anal. 16(4)(2018).
- N. P. N. Ngoc, N.V. Vinh, P. T. T. Hien, Integral inequalities of Hadamard type for r-Convex functions, Int. Math. Forum, 4(35)(2009), 1723-1728.
- J. Pecaric, F. Proschan and Y. T. Tong, Convex Functions, Partial Ordering and Statistical Applications, Academic Pres, New York, (1992).
- G. S. Yang, Refinement of Hadamard's inequality for r-convex functions, Indian J. Pure Appl. Math. 32(10)(2001), 1571- 1579.