On g-β-Irresolute Functions on Generalized Topological Spaces
Main Article Content
Abstract
In this paper, we introduce and investigate a new kind of function namely g-β-irresolute function along with its two weak and strong forms in generalized topological spaces. Several characterizations and interesting properties of these functions are discussed.
Article Details
References
- M. E. Abd El Monsef, S. N. El-Deeb and R. A. Mahmoud, β-open sets and β-continuous mappings, Bull. Fac. Sci. Assiut Univ., 12 (1) (1983), 77-90.
- A. Acikgoz, N. A. Tas and M. S. Sarsak, Contra g-α- and g-β-preirressloute functions on GTS's, Math. Sci., 9 (2015), 79-86.
- D. Andrijevi ´ c, Semi-preopen sets, Mat. Vesnik, 38 (1986), 24-32.
- S. Z. Bai and Y. P. Zuo, On g-α-irresolute functions, Acta Math. Hungar., 130 (4) (2011), 382-389.
- C. K. Basu and M. K. Ghosh, β-closed spaces and β-θ-subclosed graphs, European Jour. Pure Appl. Math., 1 (2008), 40-50.
- C. K. Basu and M. K. Ghosh, Locally β-closed spaces, European Jour. Pure Appl. Math., 2 (1)(2009), 85-96.
- S. Bayhan, A. Kanibir and I. L. Reilly, On functions between generalized topological spaces, Appl. Gen. Topology, 14 (2)(2013), 195-203.
- A. Császár, Generalized open sets, Acta Math. Hungar., 75 (1-2) (1997), 65-87.
- A. Császár, On the γ-interior and γ-closure of set, Acta Math. Hungar., 80 (1-2) (1998), 89-93.
- A. Császár, γ-compact spaces, Acta Math. Hungar., 87 (2000), 99-107.
- A. Császár, Generalized topology, generalized continuity, Acta Math. Hungar., 96 (4) (2002), 351-357.
- A. Császár, Separation axioms for generalized topologies, Acta Math. Hungar., 104 (1-2) (2004), 63-69.
- A. Császár, Extremally disconnected generalized topologies, Annales Univ. Budapest, Section Math, 17 (2004), 151-161.
- A. Császár, Generalized open sets in generalized topologies, Acta Math. Hungar., 106 (1-2) (2005), 53-66.
- A. Császár, Further remarks on the formula for γ-interior, Acta Math. Hungar., 113(4) (2006), 325-328.
- A. Császár, Remarks on quasi topologies, Acta Math. Hungar., 119 (2008), 197-200.
- A. Császár, δ- and θ-modifications of generalized topologies, Acta Math. Hungar., 120 (3) (2008), 275-279.
- J. Dugundji, Topology, Allyn and Bacon, Boston, Mass, (1966).
- R. Engelking, General Topology, Second edition, Sigma series in pure Mathematics, 6, Heldermann Verlag, Berlin, (1989).
- M. K. Ghosh and C. K. Basu, Generalized connectedness on generalized topologies, Jour. Adv. Research in Appl. Math., 6(3) (2014), 23-34.
- R. A. Mahmoud and M. E. Abd El-Monsef, β-irresolute and β-topological invariant, Proc. Pakistan Acad. Sci., 27 (1990), 285-296.
- W. K. Min, Weak continuity on generalized toological spaces, Acta Math. Hungar., 124 (1-2) (2009), 73-81.
- W. K. Min, Almost continuity on generalized toological spaces, Acta Math. Hungar., 125 (1-2) (2009), 121-125.
- W. K. Min, Generalized continuous functions defined by generalized open sets on generalized toological spaces, Acta Math. Hungar., 128 (4) (2010), 299-306.
- T. Noiri, Unified characterizations for modifications of R 0 and R 1 topological spaces, Rend. Circ. Mat. Palermo, 55 (2) (2006), 29-42.
- T. Noiri, Weak and strong forms of β-irresolute functions, Acta Math. Hungar., 99(4) (2003), 315-328.
- M. S. Sarsak, Weak separation axioms in generalized topological spaces, Acta Math. Hungar., 131 (1-2) (2011), 110-121.
- M. S. Sarsak, On µ-compact sets in µ-spaces, Quest. Answers Gen. Topology, 31 (2013), 49-57.
- R. X. Shen, A note on generalized connectedness, Acta. Math. Hungar., 122 (3) (2009), 231-235.