On g-β-Irresolute Functions on Generalized Topological Spaces

Main Article Content

M K Ghosh

Abstract

In this paper, we introduce and investigate a new kind of function namely g-β-irresolute function along with its two weak and strong forms in generalized topological spaces. Several characterizations and interesting properties of these functions are discussed.

Article Details

References

  1. M. E. Abd El Monsef, S. N. El-Deeb and R. A. Mahmoud, β-open sets and β-continuous mappings, Bull. Fac. Sci. Assiut Univ., 12 (1) (1983), 77-90.
  2. A. Acikgoz, N. A. Tas and M. S. Sarsak, Contra g-α- and g-β-preirressloute functions on GTS's, Math. Sci., 9 (2015), 79-86.
  3. D. Andrijevi ´ c, Semi-preopen sets, Mat. Vesnik, 38 (1986), 24-32.
  4. S. Z. Bai and Y. P. Zuo, On g-α-irresolute functions, Acta Math. Hungar., 130 (4) (2011), 382-389.
  5. C. K. Basu and M. K. Ghosh, β-closed spaces and β-θ-subclosed graphs, European Jour. Pure Appl. Math., 1 (2008), 40-50.
  6. C. K. Basu and M. K. Ghosh, Locally β-closed spaces, European Jour. Pure Appl. Math., 2 (1)(2009), 85-96.
  7. S. Bayhan, A. Kanibir and I. L. Reilly, On functions between generalized topological spaces, Appl. Gen. Topology, 14 (2)(2013), 195-203.
  8. A. Császár, Generalized open sets, Acta Math. Hungar., 75 (1-2) (1997), 65-87.
  9. A. Császár, On the γ-interior and γ-closure of set, Acta Math. Hungar., 80 (1-2) (1998), 89-93.
  10. A. Császár, γ-compact spaces, Acta Math. Hungar., 87 (2000), 99-107.
  11. A. Császár, Generalized topology, generalized continuity, Acta Math. Hungar., 96 (4) (2002), 351-357.
  12. A. Császár, Separation axioms for generalized topologies, Acta Math. Hungar., 104 (1-2) (2004), 63-69.
  13. A. Császár, Extremally disconnected generalized topologies, Annales Univ. Budapest, Section Math, 17 (2004), 151-161.
  14. A. Császár, Generalized open sets in generalized topologies, Acta Math. Hungar., 106 (1-2) (2005), 53-66.
  15. A. Császár, Further remarks on the formula for γ-interior, Acta Math. Hungar., 113(4) (2006), 325-328.
  16. A. Császár, Remarks on quasi topologies, Acta Math. Hungar., 119 (2008), 197-200.
  17. A. Császár, δ- and θ-modifications of generalized topologies, Acta Math. Hungar., 120 (3) (2008), 275-279.
  18. J. Dugundji, Topology, Allyn and Bacon, Boston, Mass, (1966).
  19. R. Engelking, General Topology, Second edition, Sigma series in pure Mathematics, 6, Heldermann Verlag, Berlin, (1989).
  20. M. K. Ghosh and C. K. Basu, Generalized connectedness on generalized topologies, Jour. Adv. Research in Appl. Math., 6(3) (2014), 23-34.
  21. R. A. Mahmoud and M. E. Abd El-Monsef, β-irresolute and β-topological invariant, Proc. Pakistan Acad. Sci., 27 (1990), 285-296.
  22. W. K. Min, Weak continuity on generalized toological spaces, Acta Math. Hungar., 124 (1-2) (2009), 73-81.
  23. W. K. Min, Almost continuity on generalized toological spaces, Acta Math. Hungar., 125 (1-2) (2009), 121-125.
  24. W. K. Min, Generalized continuous functions defined by generalized open sets on generalized toological spaces, Acta Math. Hungar., 128 (4) (2010), 299-306.
  25. T. Noiri, Unified characterizations for modifications of R 0 and R 1 topological spaces, Rend. Circ. Mat. Palermo, 55 (2) (2006), 29-42.
  26. T. Noiri, Weak and strong forms of β-irresolute functions, Acta Math. Hungar., 99(4) (2003), 315-328.
  27. M. S. Sarsak, Weak separation axioms in generalized topological spaces, Acta Math. Hungar., 131 (1-2) (2011), 110-121.
  28. M. S. Sarsak, On µ-compact sets in µ-spaces, Quest. Answers Gen. Topology, 31 (2013), 49-57.
  29. R. X. Shen, A note on generalized connectedness, Acta. Math. Hungar., 122 (3) (2009), 231-235.