Controlled *-G-Frames and *-G-Multipliers in Hilbert Pro-C*-Modules
Main Article Content
Abstract
A generalization of multiplier, controlled g-frames and g-Bessel sequences to *-g-frames and *-g-Bessel sequences in Hilbert pro-C*-modules is presented. It is demonstrated that controlled *-g-frames are equivalent to *-g-frames in Hilbert pro-C*-modules.
Article Details
References
- A. Alijani, M. A. Dehghan, *- frames in Hilbert -C*-modules, U.P.B. Sci. Bull. Series A, 7(1)5 (2013), 129-140.
- M.Azhini, N. Haddadzadeh, Fusion frames in Hilbert modules over pro-C*-algebras, Int. J. Ind. Math. 5 (2013), No. 2, 109-118.
- R. J. Duffin, and A. C. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc. 72 (1952), 341-366.
- M. Frank, D.R. Larson, A module frame concept for Hilbert C*-modules, in: Functional and Harmonic Analysis of Wavelets, San Antonio, TX, January, 1990, in: Contemp. Math, 247, Amer. Math. Soc. Providence, RI, 2000, 207-233.
- M. Frank, D.R. Larson, Frames in Hilbert C*-modules and C*-algebras, J. Oper. Theory 48 (2) (2002) 273-314.
- N. Haddadzadeh,G-frames in Hilbert pro-C*-modules, Int. J. Pure Appl. Math. 105 (2015), 727-743.
- A. Inoue, Locally C*-algebras, Mem. Fac. Sci. Kyushu Univ. Ser. A, 25 (1971), No. 2, 197-235.
- M. Joita, On Hilbert- modules over locally C*-algebras. II, Period. Math. Hung. 51 (1) (2005), 27-36.
- M. Joita, Hilbert modules over locally C*-algebras, University of Bucharest Press, (2006), 150.
- M. Joita,On frames in Hilbert modules over pro-C*-algebras, Topol. Appl. 156 (2008), 83-92.
- G.G Kasparov, Hilbert C*-modules, Thorem of Stinespring and Voiculescu, J. Operator Theory, 4 (1980), 133-150.
- A. Khosravi, B. Kosravi, Fusion frames and g-frames in Hilbert C*-modules, Int. J. Wavelets Multiresolut. Inf. Process. 6 (3) (2008), 433-446.
- A. Khosravi, M. S. Asgari, Frames and bases in Hilbert modules over Locally C*-algebras, Int. J. Pure Appl. Math., 14 (2004), No. 2, 169-187.
- A. Khosravi, M. Asgari, Frames and bases in Hilbert modules over Locally C*-algebras, Indian J. Pure Appl. Math., 14 (2004), No 2, 171-190.
- E. C. Lance, Hilbert C*-modules, A toolkit for operator algebraists, London Math. Soc. Lecture Note Series 210. Cambridge Univ. Press, Cambridge, 1995.
- B. Magagajnahosravi, Hilbert C*-modules in which all closed submodules are complemented, Proc. Amer. Math. Soc, 125 (3) (1997), 849-852.
- V. M. Manuilov, Adjointability of operators on Hilbert C*-modules, Acta Math. Univ. Comenianae, 65 (2) (1996), 161-169.
- N.C. Phillips, Inverse limits of C*-algebras, J. operator Theory, 19 (1988), 159-195.
- I. Raeburn. S.J. Thompson, Countably generated Hilbert modules, the Kasparrov stabilisation theorem, and frames with Hilbert modules, Proc. Amer Math. Soc. 131 (5) (2003), 1557-1564.
- M. Rashidi-Kouchi, A. Nazari, On stability of g-frames and g-Riesz bases in Hilbert C*-modules, Int. J. Wavelets Multiresolut. Inf. Process., 12 (6) (2014), Art. ID 1450036.
- A. Rahimi and A. Freydooni, Controlled G-Frames and Their G-Multipliers in Hilbert spaces, An. Univ. Ovidius Constana, Ser. Mat. 21 (2013), 223-236.
- W. Sun, G- Frames and g-Riesz bases,J. Math. Anal. Appl 322 (2006), 437-452.
- N. E. Wegg Olsen, K-Theory and C*-algebras, Friendly Approch, Oxford University Press, Oxford, England, (1993).
- Yu. I. Zhuraev, F. Sharipov, Hilbert modules over locally C*-algebra, arXiv:math. 0011053 V3 [math. OA], (2001).
- X. Xiao. , Zeng, Some properties of g-frames in Hilbert C*-algebra, J. Math. Anal. Appl. 363 (2010), 399-408.