Nonlinear Sequential Riemann-Liouville and Caputo Fractional Differential Equations with Nonlocal and Integral Boundary Conditions

Main Article Content

Suphawat Asawasamrit, Nawapol Phuangthong, Sotiris K. Ntouyas, Jessada Tariboon

Abstract

In this paper, we discuss the existence and uniqueness of solutions for a new class of sequential fractional differential equations of Riemann-Liouville and Caputo types with nonlocal integral boundary conditions, by using standard fixed point theorems. We also demonstrate the application of the obtained results with the aid of examples.

Article Details

References

  1. R.P. Agarwal, Y. Zhou, J.R. Wang, X. Luo, Fractional functional differential equations with causal operators in Banach spaces, Math. Comput. Modelling 54 (2011), 1440-1452.
  2. B. Ahmad, S.K. Ntouyas, A. Alsaedi, M. Alnahdi, Existence theory for fractional-order neutral boundary value problems, Frac. Differ. Calc. 8 (2018), 111-126.
  3. B. Ahmad, S.K. Ntouyas, A. Alsaedi, Caputo-type fractional boundary value problems for differential equations and inclusions with multiple fractional derivatives, J. Nonlinear Funct. Anal. 2017 (2017), Art. ID 52.
  4. B. Ahmad, S.K. Ntouyas, A. Alsaedi, New existence results for nonlinear fractional differential equations with three-point integral boundary conditions, Adv. Difference Equ. 2011 (2011) Art. ID 107384, 11 pp.
  5. B. Ahmad, S.K. Ntouyas, Nonlinear fractional differential equations and inclusions of arbitrary order and multi-strip boundary conditions, Electron. J. Differ. Equ. 2012 (2012), No. 98, pp. 1-22.
  6. B. Ahmad, S.K. Ntouyas, A. Alsaedi, On fractional differential inclusions with anti-periodic type integral boundary conditions, Bound. Value Probl. 2013 (2013), Art. ID 82.
  7. B. Ahmad, A. Alsaedi, S.K. Ntouyas, J. Tariboon, Hadamard-type Fractional Differential Equations, Inclusions and Inequalities. Springer, Cham, 2017.
  8. M. Benchohra, J. Henderson, S.K. Ntouyas, A. Ouahab, Existence results for fractional order functional differential equations with infinite delay, J. Math. Anal. Appl. 338 (2008), 1340-1350.
  9. K. Diethelm, The Analysis of Fractional Differential Equations, Lecture Notes in Mathematics, Springer-verlag Berlin Heidelberg, 2010.
  10. H. Erg ¨oren, B. Ahmad, Neutral functional fractional differential inclusions with impulses at variable times, Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms 24 (2017), 235-246.
  11. A. Granas, J. Dugundji, Fixed Point Theory, Springer-Verlag, New York, 2003.
  12. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam, 2006.
  13. M.A. Krasnoselskii, Two remarks on the method of successive approximations, Uspekhi Mat. Nauk 10 (1955), 123-127.
  14. V. Lakshmikantham, S. Leela, J.V. Devi, Theory of Fractional Dynamic Systems, Cambridge Academic Publishers, Cambridge, 2009.
  15. K. S. Miller, B. Ross, An Introduction to the Fractional Calculus and Differential Equations, John Wiley, New York, 1993.
  16. I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
  17. D. Qarout, B. Ahmad, A. Alsaedi, Existence theorems for semi-linear Caputo fractional differential equations with nonlocal discrete and integral boundary conditions, Fract. Calc. Appl. Anal. 19 (2016), 463-479.
  18. S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach, Yverdon, 1993.
  19. J. Tariboon, A. Cuntavepanit, S.K. Ntouyas, W. Nithiarayaphaks, Separated boundary value problems of sequential Caputo and Hadamard fractional differential equations, Preprint.
  20. C. Yu, G. Gao, Some results on a class of fractional functional differential equations, Commun. Appl. Nonlinear Anal. 11 (2004), 67-75.
  21. C. Yu, G. Gao, Existence of fractional differential equations, J. Math. Anal. Appl. 310 (2005), 26-29.