Linear Functionals Connected with Strong Double Cesaro Summability
Main Article Content
Abstract
D. Borwein characterized linear functionals on the normed linear spaces wp and Wp. In this paper we extend his results by presenting definitions for the double strong Cesaro mean. Using these new notions of strongly p-Cesaro summable double sequence and strongly p-Cesaro summable bivariate function we present extensions of D. Borwein's results.
Article Details
References
- S. Banach, Theorie des operations lineaires, Warsaw, 1932.
- D. Borwein, Linear functionals connected with strong Cesaro Summability, J. London Math. Soc. 40 (1965), 628-634.
- T. J. I. A. Bromwich, An introduction to the theory of infinite series, second ed., Cambridge, 1926 (repr. Macmillan, London, 1955).
- G. H. Hardy, On the convergence of certain multiplie series, Proc. Cambridge Philos. Soc. 19 (1916-1919), 86-95.
- F. Moricz, Tauberian theorems for Cesaro summable double sequences, Studia Math. 110 (1994), 83-96.
- F. Moricz, On the convergence in a restricted sense of multiple series, Anal. Math. 5(1979), 135-147.
- F. Moricz, Some remarks on the notion of regular convergence of multiple series, Acta Math. Hungar. 41 (1983), 161-168.
- F. Moricz, Extensions of the spaces c and c0 from single to double sequences, Acta Math. Hungar. 57 (1991), 129-136.
- Mursaleen and Osama H. H. Edely Statistical convergence of double sequences, J. Math. Anal. Appl. 288 (2003), 223-231.
- R. F. Patterson, Double Sequence Core Theorems, Internat. J. Math. and Math. Sci. 22 (1999), 785-793.
- A. Pringsheim, Zur theorie der zweifach unendlichen Zahlenfolgen, Math. Ann. 53 (1900), 289-321.
- A. Pringsheim, Elementare Theorie der unendlichen Doppelreihen, Sitzung-Berichte. der math.-phys. Classe der Akad. der Wissenschafften zu Munchen 27 (1897), 101-152.