On the Solutions of a Class of Fractional Hyperbolic Integro-Differential Inclusions

Main Article Content

Aurelian Cernea


We study a Darboux problem associated to a fractional hyperbolic integro-differential inclusion defined by Caputo-Katugampola fractional derivative and we prove several existence results for this problem.

Article Details


  1. R. Almeida, A. B. Malinowski and T. Odzijewicz, Fractional differential equations with dependence on the CaputoKatugampola derivative, J. Comput. Nonlinear Dyn. 11 (2016), ID 061017.
  2. D. B˘aleanu, K. Diethelm, E. Scalas and J. J. Trujillo, Fractional Calculus Models and Numerical Methods, World Scientific, Singapore, 2012.
  3. A. Bressan and G. Colombo, Extensions and selections of maps with decomposable values, Studia Math. 90 (1988), 69-86.
  4. A. Cernea, On an integro-differential inclusion of fractional order, Differ. Equ. Dyn. Syst. 3 (2013), 225-236.
  5. A. Cernea, Continuous family of solutions for fractional integro-differential inclusions of Caputo-Katugampola type, Progr. Fract. Differ. Appl. 5 (2019), 37-42.
  6. A. Cernea, On a fractional integro-differential inclusion of Caputo-Katugampola type, Bull. Math. Anal. Appl. to appear.
  7. K. Diethelm, The Analysis of Fractional Differential Equations, Springer, Berlin, 2010.
  8. A. Erd ´elyi and H. Kober, Some remarks on Hankel transforms, Q. J. Math. 11 (1940), 212-221.
  9. A. F. Filippov, Classical solutions of differential equations with multivalued right hand side, SIAM J. Control, 5 (1967), 609-621.
  10. U. N. Katugampola, A new approach to generalized fractional derivative, Bull. Math. Anal. Appl. 6 (2014), 1-15.
  11. A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.
  12. K. Miller and B. Ross, An Introduction to the Fractional Calculus and Differential Equations, John Wiley, New York, 1993.
  13. I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
  14. H.D. Tuan, On local controllability of hyperbolic inclusions, J. Math. Syst. Estim. Control, 4 (1994), 319-339.
  15. S. Zeng, D. B˘aleanu, Y. Bai and G. Wu, Fractional differential equations of Caputo-Katugampola type and numerical solutions, Appl. Math. Comput. 315 (2017), 549-554.