On the Solutions of a Class of Fractional Hyperbolic Integro-Differential Inclusions
Main Article Content
Abstract
We study a Darboux problem associated to a fractional hyperbolic integro-differential inclusion defined by Caputo-Katugampola fractional derivative and we prove several existence results for this problem.
Article Details
References
- R. Almeida, A. B. Malinowski and T. Odzijewicz, Fractional differential equations with dependence on the CaputoKatugampola derivative, J. Comput. Nonlinear Dyn. 11 (2016), ID 061017.
- D. B˘aleanu, K. Diethelm, E. Scalas and J. J. Trujillo, Fractional Calculus Models and Numerical Methods, World Scientific, Singapore, 2012.
- A. Bressan and G. Colombo, Extensions and selections of maps with decomposable values, Studia Math. 90 (1988), 69-86.
- A. Cernea, On an integro-differential inclusion of fractional order, Differ. Equ. Dyn. Syst. 3 (2013), 225-236.
- A. Cernea, Continuous family of solutions for fractional integro-differential inclusions of Caputo-Katugampola type, Progr. Fract. Differ. Appl. 5 (2019), 37-42.
- A. Cernea, On a fractional integro-differential inclusion of Caputo-Katugampola type, Bull. Math. Anal. Appl. to appear.
- K. Diethelm, The Analysis of Fractional Differential Equations, Springer, Berlin, 2010.
- A. Erd ´elyi and H. Kober, Some remarks on Hankel transforms, Q. J. Math. 11 (1940), 212-221.
- A. F. Filippov, Classical solutions of differential equations with multivalued right hand side, SIAM J. Control, 5 (1967), 609-621.
- U. N. Katugampola, A new approach to generalized fractional derivative, Bull. Math. Anal. Appl. 6 (2014), 1-15.
- A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.
- K. Miller and B. Ross, An Introduction to the Fractional Calculus and Differential Equations, John Wiley, New York, 1993.
- I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
- H.D. Tuan, On local controllability of hyperbolic inclusions, J. Math. Syst. Estim. Control, 4 (1994), 319-339.
- S. Zeng, D. B˘aleanu, Y. Bai and G. Wu, Fractional differential equations of Caputo-Katugampola type and numerical solutions, Appl. Math. Comput. 315 (2017), 549-554.