Fractional Exponentially m-Convex Functions and Inequalities
Main Article Content
Abstract
In this article, we introduce a new class of convex functions involving m ∈ [0, 1], which is called exponentially m-convex function. Some new Hermite-Hadamard inequalities for exponentially m-convex functions via Reimann-Liouville fractional integral are deduced. Several special cases are discussed. Results proved in this paper may stimulate further research in different areas of pure and applied sciences.
Article Details
References
- G. Alirezaei and R. Mathar, On exponentially concave functions and their impact in information theory, Information Theory and Applications Workshop, San Diego, California, USA, 2018.
- T. Antczak, (p, r)-invex sets and functions, J. Math. Anal. Appl. 263(2001), 355-379.
- M. U. Awan, M. A. Noor and K. I. Noor, Hermite-Hadamard inequalities for exponentiaaly convex functions, Appl. Math. Inform. Sci. 2(12)(2018), 405-409.
- M. K. Bakula, M. E. Ozdemir and J. Pecaric, Hadamard type inequalities for m-convex and (α; m)-convex functions, J. Inequal. Pure Appl. Math. 9(4)(2008), Art. ID 96.
- I. A. Baloch and I. Iscan, Some Hermite-Hadamard type inequalities for harmonically (s; m)-convex functions in second sense, arXiv:1604.08445v1
- [math.CA], 2016.
- M. K. Bacul, J. Pecaric and M. Ribicic, Companion inequalities to Jensen's inequality for m-convex and (α, m) convex functions, J. Inequal. Pure. Appl. Math. 7(5)(2006), Art. ID 194.
- M. Braccamonte, J. Gimenez, N. Merentes and M. Vivas, Fejer type inequalities for m-convex functions, Publicaciones en Ciencias y Tecnolog ´ia, 10(1)(2016), 7-11.
- S. S. Dragomir and I. Gomm, Some Hermite-Hadamard type inequalities for functions whose exponentials are convex, Stud. Univ. Babes-Bolyai Math. 60(4)(2015), 527-534.
- S. S. Dragomir and G. Toader, Some inequalities for m-convex functions, Stud. Univ. Babes-Bolyai Math. 38 (1993), 21-28.
- S. S. Dragomir, On some new inequalities of Hermite-Hadamard type for m - convex functions, Tamkang J. Math. 33(1)(2002), 45-55.
- L. Fej ´eer, Uber die fourierreihen, II, Math Naturwise. Anz Ungar. Akad. Wiss. (24)(1906), 369-390.
- J. Hadamard, Etude sur les proprietes des fonctions entieres e.t en particulier dune fonction consideree par Riemann. J. Math. Pure Appl. (58)(1893), 171-215.
- C. Y. He, Y. Wang, B. Y.Xi and F. Qi, Hermite-Hadamard type inequalities for (α; m)-HA and strongly (α; m)-HA convex functions, J. Nonlinear Sci. Appl. (10)(2017), 205-214.
- M. Mahdavi, Exploiting Smoothness in Statistical Learning, Sequential Prediction, and Stochastic Optimization. East Lansing, MI, USA: Michigan State University, (2014).
- C. P. Niculescu and L. E. Persson, Convex Functions and Their Applications. Springer-Verlag, New York, (2018).
- M. A. Noor, Some developments in general variational inequalities, Appl. Math. Comput. 152(2004), 199-277.
- M. A. Noor and K. I. Noor, Exponentially convex functions, Preprint.
- M. A. Noor, K. I. Noor and M. U. Awan, Fractional Hermite-Hadamard inequalities for convex functions and applications, Tbilisi J. Math. 8(2)(2015), 103-113.
- M. A. Noor, K. I. Noor, and S. Rashid, Exponential r-convex functions and inequalities, Preprint.
- M. A. Noor, K. I. Noor and S. Rashid, Fractal exponential convex functions and inequalities, Preprint.
- S. Rashid, M. A. Noor and K. I. Noor, Modified exponential convex functions and inequalities, Open Acess J. Math. Theor. Phy. 2(2)(2019), 45-51.
- M. E. Ozdemir, M. Avci. and H. Kavurmaci, Hermite-Hadamard type inequalities via (α, m)-convexity, J. Comput. Math. Appl. 61(2011), 2614-2620.
- S. Pal and T. K. L. Wong, Exponentially concave functions and a new information geometry, Ann. Probab. 46(2)(2018), 1070-1113.
- J. Park, New Ostrowski-like type inequalities for differentable (s, m)-convex mappings, Int. J. Pure Appl. Math. 78 (8) (2012), 1077-1089.
- J. E. Pecaric, F. Proschan and Y. L. Tong, Convex Functions, Partial Orderings and Statistical Applications, Academics Press, New York, (1992).
- J. Pecaric and J. Jaksetic, Exponential onvexity, Euler-Radau expansions and stolarsky means, Rad Hrvat. Matematicke Znanosti, 515(2013), 81-94
- I. Podlubny, Fractional Differential Equations: Mathematics in Science and Engineering, Academic Press, San Diego, (1999).
- M. Rostamian, S. S. Dragomir and M. D. L. Sen, Estimation type results related to Fej ´er inequality with applications, J. Inequal. Appl, 2018 (2018), Art. ID 85.
- E. Set, A. O. Akdemir and I. Mumcu, The Hermite-Hadamard type inequality and its extensions for conformable fractional integrals of any order α > 0, Preprint.
- G. Toader, Some generalizations of the convexity, Proc. Colloq. Approx. Opt. Cluj-Napoca (Romania), University of Cluj-Napoca, 1984, 329-338.
- G. Toader, The order of starlike convex function, Bull. Appl. Comp. Math. 85(1998), 347-350.
- G. Stampacchia, Formes bilineaires coercivvities sur les ensembles convexes, C. R. Acad. Sci. Paris, 258(1964), 4413-4416.