Fuzzy Ideals on Ordered AG-Groupoids

Main Article Content

Nasreen Kausar, Meshari Alesemi, -- Salahuddin

Abstract

In this paper, we define the concept of direct product of finite fuzzy normal subrings over nonassociative and non-commutative rings (LA-ring) and investigate the some fundamental properties of direct product of fuzzy normal subrings.

Article Details

References

  1. J. R. Cho, J. Jezek and T. Kepka, Paramedial groupoids, Czech. Math. J. 49(1999), 277-290.
  2. A. Lafi, DFIG control: A fuzzy approach, Int. J. Adv. Appl. Sci. 6(2019), 107-116.
  3. S. A. Razak, D. Mohamad, I. I. Abdullah, A Group decision making problem using hierarchical based fuzzy soft matrix approach, Int. J. Adv. Appl. Sci. 4(2017) 26-32.
  4. J. Jezek and T. Kepka, Medial groupoids, Rozpravy CSAV Rada Mat. a Prir. Ved., 93/2, 1983, 93 pp.
  5. T. Kadir, In discrepancy between the traditional Fuzzy logic and inductive, Int. J. Adv. Appl. Sci. 1(2014), 36-43.
  6. N. Kausar, M. Waqar, Characterizations of non-associative rings by their intuitionistic fuzzy bi-ideals, Eur. J. Pure Appl. Math. 12(2019), 226-250.
  7. N. Kausar, Characterizations of non-associative ordered semigroups by the properties of their fuzzy ideals with thresholds (α, β], Prikl. Diskr. Mat. 43(2019), 37-59.
  8. N. Kausar, Direct product of finite intuitionistic fuzzy normal subrings over non-associative rings, Eur. J. Pure Appl. Math. 12(2)(2019), 622-648.
  9. N. Kausar, B. Islam, M. Javaid, S, Amjad, U. Ijaz, Characterizations of non-associative rings by the properties of their fuzzy ideals, J. Taibah Univ. Sci. 13(2019), 820-833.
  10. N. Kausar, B. Islam, S. Amjad, M. Waqar, Intuitionistics fuzzy ideals with thresholds(α, β] in LA-rings, Eur. J. Pure Appl. Math. 12(3)(2019), 906-943.
  11. N. Kausar, M. Waqar, Direct product of finite fuzzy normal subrings over non-associative rings, Int. J. Anal. Appl. 17(5)(2019), 752-770.
  12. M. A. Kazim and M. Naseeruddin, On almost semigroups, Alig. Bull. Math. 2(1972), 1-7.
  13. N. Kehayopulu, On left regular ordered semigroups, Math. Japon. 35(1990), 1057-1060.
  14. N. Kehayopulu, On intra-regular ordered semigroups, Semigroup Forum, 46(1993), 271-278.
  15. N. Kehayopulu, On completely regular ordered semigroups, Sci. Math. 1(1998) 27-32.
  16. N. Kehayopulu and M. Tsingelis, Fuzzy sets in ordered groupoids, Semigroup Forum, 65(2002), 128-132.
  17. N. Kehayopulu and M. Tsingelis, Fuzzy bi-ideals in ordered semigroups, Inform. Sci. 171(2005), 13-28.
  18. N. Kuroki, Fuzzy bi-ideals in semigroups, Comment. Math. Univ. St. Pauli, 28(1979), 17-21.
  19. N. Kuroki, On fuzzy semigroups, Inform. Sci. 53(1991), 203-236.
  20. J. N. Mordeson, D. S. Malik and N. Kuroki, Fuzzy semigroups, Springer, Berlin, 2003.
  21. Q. Mushtaq and S. M. Yusuf, On LA-semigroups, Alig. Bull. Math. 8(1978), 65-70.
  22. P. V. Protic and N. Stevanovic, AG-test and some general properties of Abel-Grassmann's groupoids, Pure Math. Appl. 6(1995), 371-383.
  23. A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl. 35(1971), 512-517.
  24. T. Shah, N. Kausar and I. Rehman, Intuitionistic fuzzy normal subrings over a non-associative ring, An. st. Univ. Ovidius constanta, 1(2012), 369-386.
  25. T. Shah, N. Kausar, Characterizations of non-associative ordered semigroups by their fuzzy bi-ideals, Theor. Computer Sci. 529(2014), 96-110.
  26. O. Ozer, S. Omran, On the generalized C*- valued metric spaces related with Banach fixed point theory, Int. J. Adv. Appl. Sci. 4(2017), 35-37.
  27. L. A. Zadeh, Fuzzy sets, Inform. Control, 8(1965), 338-353.