Fuzzy Ideals on Ordered AG-Groupoids
Main Article Content
Abstract
In this paper, we define the concept of direct product of finite fuzzy normal subrings over nonassociative and non-commutative rings (LA-ring) and investigate the some fundamental properties of direct product of fuzzy normal subrings.
Article Details
References
- J. R. Cho, J. Jezek and T. Kepka, Paramedial groupoids, Czech. Math. J. 49(1999), 277-290.
- A. Lafi, DFIG control: A fuzzy approach, Int. J. Adv. Appl. Sci. 6(2019), 107-116.
- S. A. Razak, D. Mohamad, I. I. Abdullah, A Group decision making problem using hierarchical based fuzzy soft matrix approach, Int. J. Adv. Appl. Sci. 4(2017) 26-32.
- J. Jezek and T. Kepka, Medial groupoids, Rozpravy CSAV Rada Mat. a Prir. Ved., 93/2, 1983, 93 pp.
- T. Kadir, In discrepancy between the traditional Fuzzy logic and inductive, Int. J. Adv. Appl. Sci. 1(2014), 36-43.
- N. Kausar, M. Waqar, Characterizations of non-associative rings by their intuitionistic fuzzy bi-ideals, Eur. J. Pure Appl. Math. 12(2019), 226-250.
- N. Kausar, Characterizations of non-associative ordered semigroups by the properties of their fuzzy ideals with thresholds (α, β], Prikl. Diskr. Mat. 43(2019), 37-59.
- N. Kausar, Direct product of finite intuitionistic fuzzy normal subrings over non-associative rings, Eur. J. Pure Appl. Math. 12(2)(2019), 622-648.
- N. Kausar, B. Islam, M. Javaid, S, Amjad, U. Ijaz, Characterizations of non-associative rings by the properties of their fuzzy ideals, J. Taibah Univ. Sci. 13(2019), 820-833.
- N. Kausar, B. Islam, S. Amjad, M. Waqar, Intuitionistics fuzzy ideals with thresholds(α, β] in LA-rings, Eur. J. Pure Appl. Math. 12(3)(2019), 906-943.
- N. Kausar, M. Waqar, Direct product of finite fuzzy normal subrings over non-associative rings, Int. J. Anal. Appl. 17(5)(2019), 752-770.
- M. A. Kazim and M. Naseeruddin, On almost semigroups, Alig. Bull. Math. 2(1972), 1-7.
- N. Kehayopulu, On left regular ordered semigroups, Math. Japon. 35(1990), 1057-1060.
- N. Kehayopulu, On intra-regular ordered semigroups, Semigroup Forum, 46(1993), 271-278.
- N. Kehayopulu, On completely regular ordered semigroups, Sci. Math. 1(1998) 27-32.
- N. Kehayopulu and M. Tsingelis, Fuzzy sets in ordered groupoids, Semigroup Forum, 65(2002), 128-132.
- N. Kehayopulu and M. Tsingelis, Fuzzy bi-ideals in ordered semigroups, Inform. Sci. 171(2005), 13-28.
- N. Kuroki, Fuzzy bi-ideals in semigroups, Comment. Math. Univ. St. Pauli, 28(1979), 17-21.
- N. Kuroki, On fuzzy semigroups, Inform. Sci. 53(1991), 203-236.
- J. N. Mordeson, D. S. Malik and N. Kuroki, Fuzzy semigroups, Springer, Berlin, 2003.
- Q. Mushtaq and S. M. Yusuf, On LA-semigroups, Alig. Bull. Math. 8(1978), 65-70.
- P. V. Protic and N. Stevanovic, AG-test and some general properties of Abel-Grassmann's groupoids, Pure Math. Appl. 6(1995), 371-383.
- A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl. 35(1971), 512-517.
- T. Shah, N. Kausar and I. Rehman, Intuitionistic fuzzy normal subrings over a non-associative ring, An. st. Univ. Ovidius constanta, 1(2012), 369-386.
- T. Shah, N. Kausar, Characterizations of non-associative ordered semigroups by their fuzzy bi-ideals, Theor. Computer Sci. 529(2014), 96-110.
- O. Ozer, S. Omran, On the generalized C*- valued metric spaces related with Banach fixed point theory, Int. J. Adv. Appl. Sci. 4(2017), 35-37.
- L. A. Zadeh, Fuzzy sets, Inform. Control, 8(1965), 338-353.