On Cox-Ross-Rubinstein Pricing Formula for Pricing Compound Option
Main Article Content
Abstract
The fundamental objective of this paper is twofold. Firstly, to derive the Cox-Ross-Rubinstein type new formula for risk neutral pricing of European compound call option, where the underlying asset is also a European call option. Thirdly, to prove that our newly derived CRR risk neutral pricing formula for compound call option, converges in distribution to the well known, continuous time Black-Scholes formula for pricing the compound call option on call.
Article Details
References
- Agliardi, E., Agliardi, R., A closed-form solution for multi-compound options. Risk Lett. 1 (2) (2004), 12.
- Black, F., & Scholes, M. The pricing of options and corporate liabilities. J. Politic. Econ. 81 (3) (1973), 637-654.
- Cassimon, D., Engelen, P.-J., Thomassen, L., & Van Wouwe, M. The valuation of a NDA using a 6-fold compound option. Res. Policy, 33 (1) (2004), 41-51.
- Chiarella, C., Griebsch, S., Kang, B., A comparative study on time-efficient methods to price compound options in the Heston model. Comput. Math. Appl. 67 (6) (2014), 12541270.
- Chiarella, C., Kang, B., The evaluation of American compound option prices under stochastic volatility and stochastic interest rates. J. Comput. Financ. 14 (9) (2011), 121.
- Cortazar, G., & Schwartz, E. S. A compound option model of production and intermediate inventories. J. Business, 66 (4) (1993), 517-540.
- Cutland, N. J., & Roux, A. Derivative pricing in discrete time, Springer Science & Business Media, 2012.
- Cox, J. C., & Ross, S. A. The valuation of options for alternative stochastic processes. J. Financ. Econ. 3 (1-2) (1976), 145-166.
- Geske, R. The valuation of compound options. J. Financ. Econ. 7 (1) (1979), 63-81.
- Geske, R. The valuation of corporate liabilities as compound options. J. Financ. Quant. Anal. 12 (4) (1977), 541-552.
- Griebsch, S.A. The evaluation of European compound option prices under stochastic volatility using Fourier transform techniques. Rev. Deriv. Res. 16 (2) (2013), 135165.
- Gukhal, C.R. The compound option approach to American options on jump diffusion. J. Econ. Dyn. Control 28 (10) (2004), 20552074.
- Fouque, J.-P., Han, C.-H. Evaluation of compound options using perturbation approximation. J. Comput. Financ. 9 (1) (2005), 4161.
- Hull, J. C. Options, futures, and other derivatives: Pearson Education India, 2006.
- Lajeri-Chaherli, F., 2002. A note on the valuation of compound options. J. Futures Markets, 22 (11), 11031115.
- Marshall, A. W., and I. Olkin, A Family of Bivariate Distributions Generated by the Bivariate Bernoulli Distribution, J. Amer. Stat. Assoc. 80 (1985), 332-338.
- Merton, R. C. Option pricing when underlying stock returns are discontinuous. J. Financ. Econ. 3 (1-2) (1976), 125-144.
- Samuelson P.A. Rational Theory of Warrant Pricing. In: Grnbaum F., van Moerbeke P., Moll V. (eds) Henry P. McKean Jr. Selecta. Contemporary Mathematicians. Birkhuser, Cham. 2015.
- Z. Brzezniak and T. Zastawniak, Basic Stochastic Process. Springer, 1999.