Ideals on Generalized Topological Spaces

Main Article Content

Fahad Alsharari

Abstract

In this paper, we define the g-closure operator and investigate some of its crucial properties. We also introduce and study the concept of ψg-classes and generalized compatibly of generalized topology with ideal. This work is generalization of [4].

Article Details

References

  1. A. Csaszar, Generalized topology, generalized continuity, Acta Math. Hungar. 96 (2002), 351-357.
  2. A. Csaszar, Generalized open sets in generalized topologies, Acta Math. Hun gar. 106 (12) (2005), 53-66.
  3. A. Csaszar, Further remarks on the formula for γ-interior, Acta Math. Hungar. 113 (2006), 325-332.
  4. A. Csaszar, Modification of generalized topologies via hereditary classes, Acta Math. Hungar. 115 (2007), 29-36.
  5. A. Al-Omari and T. Noiri, Local closure functions in ideal topological spaces, Novi Sad J. Math. 43(2) (2013), 139149.
  6. M. Caldas, S. Jafari and R.M. Latif, Sobriety via θ-open sets, An. S tiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.), 56(1) (2010), 163167.
  7. F. Cammaroto, A. Catalioto, B.A. Pansera and B. Tsaban, On the cardinality of the θ-closed hull of sets, Topol. Appl. 160(18) (2013), 23712378.
  8. R.F. Dickman Jr and J.R. Porter, θ-closed subsets of Hausdorff spaces, Pac. J. Math. 59(2) (1975), 407415.
  9. S. Fomin, Extensions of topological spaces, Ann. Math. 44 (3) (1943), 471480.
  10. G. Freud, Ein Beitrag zu dem Satze von Cantor und Bendixson, Acta Math. Acad. Sci. Hungar. 9 (1958), 333336.
  11. S. Jafari and N. Rajesh, Generalized closed sets with respect to an ideal, Eur. J. Pure Appl. Math. 4(2) (2011), 147151.
  12. D.S. Jankovic, On some separation axioms and θ-closure, Mat. Vesnik, 4 (17) (32) (72) (1980), 439-450.
  13. D. Jankovic and T.R. Hamlett, New topologies from old via ideals. Amer. Math. Mon. 97(4) (1990), 295-310.
  14. K. Kuratowski, Topologie I, Warszawa, 1933.
  15. K. Kuratowski, Topology, Vol. I, Academic Press, New York, London, 1966.
  16. R. Manoharan and P. Thangavelu, Some new sets and topologies in ideal topological spaces, Chin. J. Math. 2013 (2013), Article ID 973608.
  17. S. Scheinberg, Topologies which generate a complete measure algebra, Adv. Math. 7 (1971), 231239.
  18. R. Vaidyanathaswamy, The localisation theory in set-topology. Proc. Indian Acad. Sci., Sect. A. 20 (1944), 5161.
  19. N.V. Velicko, H-closed topological spaces. Mat. Sb. (N.S.) 70 (112) (1966) 98112 (in Russian); in: American Mathematical Society Translations, vol. 78, American Mathematical Society, Providence, RI, (1969), 103118
  20. F. Alsharari and Y. M. Saber, $GTheta^{startau_{j}}_{tau_{i}}$-Fuzzy closure operator, New Math. Nat. Comput. in press. https://doi.org/10.1142/S1793005720500088.
  21. A.M. Zahran, S.E. Abbas, S.A. Abd El-baki and Y.M. Saber, Decomposition of fuzzy continuity and fuzzy ideal continuity via fuzzy idealization, Chaos Solitons Fractals, 42 (2009), 3064-3077.
  22. Y.M. Saber and M.A. Abdel-Sattar, Ideals on Fuzzy Topological Spaces, Appl. Math. Sci. 8 (2014), 1667 - 1691.
  23. Y.M. Saber and F. Alsharari, Generalized Fuzzy Ideal Closed Sets on Fuzzy Topological Spaces in S˘ostak Sense, Int. J. Fuzzy Logic Intell. Syst. 18 (3) (2018), 161-166.
  24. F. Alsharari and Y.M. Saber, Separation axioms on fuzzy ideal topological spaces in S˘ostak's sense, Int. J. Adv. Appl. Sci. 7 (2) (2020), 78 - 84.
  25. Y.M. Saber, F. Alsharari and F. Smarandache, On Single-Valued Neutrosophic Ideals in S˘ostak Sense, Symmetry, 12 (2) (2020), 193.