Ideals on Generalized Topological Spaces
Main Article Content
Abstract
In this paper, we define the g-closure operator and investigate some of its crucial properties. We also introduce and study the concept of ψg-classes and generalized compatibly of generalized topology with ideal. This work is generalization of [4].
Article Details
References
- A. Csaszar, Generalized topology, generalized continuity, Acta Math. Hungar. 96 (2002), 351-357.
- A. Csaszar, Generalized open sets in generalized topologies, Acta Math. Hun gar. 106 (12) (2005), 53-66.
- A. Csaszar, Further remarks on the formula for γ-interior, Acta Math. Hungar. 113 (2006), 325-332.
- A. Csaszar, Modification of generalized topologies via hereditary classes, Acta Math. Hungar. 115 (2007), 29-36.
- A. Al-Omari and T. Noiri, Local closure functions in ideal topological spaces, Novi Sad J. Math. 43(2) (2013), 139149.
- M. Caldas, S. Jafari and R.M. Latif, Sobriety via θ-open sets, An. S tiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.), 56(1) (2010), 163167.
- F. Cammaroto, A. Catalioto, B.A. Pansera and B. Tsaban, On the cardinality of the θ-closed hull of sets, Topol. Appl. 160(18) (2013), 23712378.
- R.F. Dickman Jr and J.R. Porter, θ-closed subsets of Hausdorff spaces, Pac. J. Math. 59(2) (1975), 407415.
- S. Fomin, Extensions of topological spaces, Ann. Math. 44 (3) (1943), 471480.
- G. Freud, Ein Beitrag zu dem Satze von Cantor und Bendixson, Acta Math. Acad. Sci. Hungar. 9 (1958), 333336.
- S. Jafari and N. Rajesh, Generalized closed sets with respect to an ideal, Eur. J. Pure Appl. Math. 4(2) (2011), 147151.
- D.S. Jankovic, On some separation axioms and θ-closure, Mat. Vesnik, 4 (17) (32) (72) (1980), 439-450.
- D. Jankovic and T.R. Hamlett, New topologies from old via ideals. Amer. Math. Mon. 97(4) (1990), 295-310.
- K. Kuratowski, Topologie I, Warszawa, 1933.
- K. Kuratowski, Topology, Vol. I, Academic Press, New York, London, 1966.
- R. Manoharan and P. Thangavelu, Some new sets and topologies in ideal topological spaces, Chin. J. Math. 2013 (2013), Article ID 973608.
- S. Scheinberg, Topologies which generate a complete measure algebra, Adv. Math. 7 (1971), 231239.
- R. Vaidyanathaswamy, The localisation theory in set-topology. Proc. Indian Acad. Sci., Sect. A. 20 (1944), 5161.
- N.V. Velicko, H-closed topological spaces. Mat. Sb. (N.S.) 70 (112) (1966) 98112 (in Russian); in: American Mathematical Society Translations, vol. 78, American Mathematical Society, Providence, RI, (1969), 103118
- F. Alsharari and Y. M. Saber, $GTheta^{startau_{j}}_{tau_{i}}$-Fuzzy closure operator, New Math. Nat. Comput. in press. https://doi.org/10.1142/S1793005720500088.
- A.M. Zahran, S.E. Abbas, S.A. Abd El-baki and Y.M. Saber, Decomposition of fuzzy continuity and fuzzy ideal continuity via fuzzy idealization, Chaos Solitons Fractals, 42 (2009), 3064-3077.
- Y.M. Saber and M.A. Abdel-Sattar, Ideals on Fuzzy Topological Spaces, Appl. Math. Sci. 8 (2014), 1667 - 1691.
- Y.M. Saber and F. Alsharari, Generalized Fuzzy Ideal Closed Sets on Fuzzy Topological Spaces in S˘ostak Sense, Int. J. Fuzzy Logic Intell. Syst. 18 (3) (2018), 161-166.
- F. Alsharari and Y.M. Saber, Separation axioms on fuzzy ideal topological spaces in S˘ostak's sense, Int. J. Adv. Appl. Sci. 7 (2) (2020), 78 - 84.
- Y.M. Saber, F. Alsharari and F. Smarandache, On Single-Valued Neutrosophic Ideals in S˘ostak Sense, Symmetry, 12 (2) (2020), 193.