The Existence Result of Renormalized Solution for Nonlinear Parabolic System with Variable Exponent and L1 Data

Main Article Content

Fairouz Souilah
Messaoud Maouni
Kamel Slimani

Abstract

In this paper, we prove the existence result of a renormalized solution to a class of nonlinear parabolic systems, which has a variable exponent Laplacian term and a Leary lions operator with data belong to L1.

Article Details

References

  1. Y. Akdim, J.Bennouna, M.Mekkour, H.Redwane, Existence of a Renormalised Solutions for a Class of Nonlinear Degenerated Parabolic Problems with L1 Data, J. Partial Differ. Equ. 26 (2013), 76-98.
  2. E. Azroula, H. Redwane, M. Rhoudaf, Existence of solutions for nonlinear parabolic systems via weak convergence of truncations, Electron. J. Differ. Equ. 2010 (2010), 68.
  3. D. Blanchard, and F. Murat, Renormalised solutions of nonlinear parabolic problems with L1 data, Existence and uniqueness, Proc. R. Soc. Edinb., Sect. A, Math. 127 (6) (1997), 1137-1152.
  4. D. Blanchard , F. Murat, and H. Redwane, Existence et unicit ´e de la solution reormalis ´ee d'un probl ´eme parabolique assez g ´en ´eral, C. R. Acad. Sci. Paris S ´er., 329 (1999), 575-580.
  5. D. Blanchard, F. Murat, and H. Redwane, Existence and Uniqueness of a Renormalized Solution for a Fairly General Class of Nonlinear Parabolic Problems, J. Differ. Equ. 177 (2001), 331-374 .
  6. L. Boccardo, A. Dall'Aglio, T. Gallou ¨et , and L. Orsina, Nonlinear parabolic equations with measure data, J. Funct. Anal., 147 (1997), 237-258 .
  7. T. M. Bendahmane, P. Wittbold, A.Zimmermann, Renormalized solutions for a nonlinear parabolic equation with variable exponents and L1 -data . J. Differ. Equ. 249 (2010), 1483-1515.
  8. M. B. Benboubker, H. Chrayteh, M. EL Moumni and H. Hjiaj, Entropy and Renormalized Solutions for Nonlinear Elliptic Problem Involving Variable Exponent and Measure Data, Acta Math. Sin. Engl. Ser. 31 (1) (2014), 151-169.
  9. Y.M. Chen, S. Levine, M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math. 66 (2006) 1383-1406.
  10. Di Perna, R.-J. and P.-L. Lions, P.-L., On the Cauchy problem for Boltzmann equations : Global existence and weak stability, Ann. Math. 130 (1989), 321-366 .
  11. B. El Hamdaoui, J. Bennouna, and A. Aberqi, Renormalized Solutions for Nonlinear Parabolic Systems in the Lebesgue Sobolev Spaces with Variable Exponents, J. Math. Phys. Anal. Geom. 14 (1) (2018), 27-53.
  12. S. Fairouz, M. Messaoud, S. Kamel, Quasilinear parabolic problems in the Lebesgue-Sobolev Space with variable exponent and L1 -data. Communicated.
  13. X.L. Fan and D. Zhao, On the spaces Lp(x) (U) and W m;p(x) (U), J. Math. Anal. Appl. 263 (2001), 424-446.
  14. R. Landes, On the existence of weak solutions for quasilinear parabolic initial-boundary problems, Proc. R. Soc. Edinb., Sect. A, Math. 89 (1981), 321-366.
  15. J.-L. Lions, Quelques m ´ethodes de r ´esolution des probl ´emes aux limites non lin ´eaires. Dunod et Gauthier-Villars, 1969.
  16. S. Ouaro and A. Ou ´edraogo, Nonlinear parabolic equation with variable exponent and L1 - data. Electron. J. Differ. Equ. 2017 (2017), 32.
  17. Q. Liu and Z. Guo, C. Wang, Renormalized solutions to a reaction-diffusion system applied to image denoising, Discrete Contin. Dyn. Syst., Ser. B, 21 (6) (2016), 1839-1858.
  18. H. Redwane, Existence of solution for a class of nonlinear parabolic systems, Electron. J. Qual. Theory Differ. Equ. 2007 (2007), 24.
  19. M. Sanch ´on, J.M. Urbano, Entropy solutions for the p(x)-Laplace equation, Trans. Amer. Math. Soc. 361 (2009), 6387-6405.
  20. J. Simon, Compact sets in Lp(0, T;B), Ann. Mat. Pura Appl. 146 (1987), 65-96.
  21. A. Youssef. B. Jaouad. B. Abdelkader. M. Mounir, Existence of a renormalized solution for the nonlinear parabolic systems with unbounded nonlinearities, Int. J. Res. Rev. Appl. Sci. 14 (2013), 75-89.
  22. C. Zhang, Entropy solutions for nonlinear elliptic equations with variable exponents. Electron. J. Differ. Equ. 2014 (2014), 92.
  23. C. Zhang, S. Zhou , Renormalized and entropy solution for nonlinear parabolic equations with variable exponents and L1 data, J. Differ. Equ. 248 (2010), 1376-1400.