The Existence Result of Renormalized Solution for Nonlinear Parabolic System with Variable Exponent and L1 Data
Main Article Content
Abstract
In this paper, we prove the existence result of a renormalized solution to a class of nonlinear parabolic systems, which has a variable exponent Laplacian term and a Leary lions operator with data belong to L1.
Article Details
References
- Y. Akdim, J.Bennouna, M.Mekkour, H.Redwane, Existence of a Renormalised Solutions for a Class of Nonlinear Degenerated Parabolic Problems with L1 Data, J. Partial Differ. Equ. 26 (2013), 76-98.
- E. Azroula, H. Redwane, M. Rhoudaf, Existence of solutions for nonlinear parabolic systems via weak convergence of truncations, Electron. J. Differ. Equ. 2010 (2010), 68.
- D. Blanchard, and F. Murat, Renormalised solutions of nonlinear parabolic problems with L1 data, Existence and uniqueness, Proc. R. Soc. Edinb., Sect. A, Math. 127 (6) (1997), 1137-1152.
- D. Blanchard , F. Murat, and H. Redwane, Existence et unicit ´e de la solution reormalis ´ee d'un probl ´eme parabolique assez g ´en ´eral, C. R. Acad. Sci. Paris S ´er., 329 (1999), 575-580.
- D. Blanchard, F. Murat, and H. Redwane, Existence and Uniqueness of a Renormalized Solution for a Fairly General Class of Nonlinear Parabolic Problems, J. Differ. Equ. 177 (2001), 331-374 .
- L. Boccardo, A. Dall'Aglio, T. Gallou ¨et , and L. Orsina, Nonlinear parabolic equations with measure data, J. Funct. Anal., 147 (1997), 237-258 .
- T. M. Bendahmane, P. Wittbold, A.Zimmermann, Renormalized solutions for a nonlinear parabolic equation with variable exponents and L1 -data . J. Differ. Equ. 249 (2010), 1483-1515.
- M. B. Benboubker, H. Chrayteh, M. EL Moumni and H. Hjiaj, Entropy and Renormalized Solutions for Nonlinear Elliptic Problem Involving Variable Exponent and Measure Data, Acta Math. Sin. Engl. Ser. 31 (1) (2014), 151-169.
- Y.M. Chen, S. Levine, M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math. 66 (2006) 1383-1406.
- Di Perna, R.-J. and P.-L. Lions, P.-L., On the Cauchy problem for Boltzmann equations : Global existence and weak stability, Ann. Math. 130 (1989), 321-366 .
- B. El Hamdaoui, J. Bennouna, and A. Aberqi, Renormalized Solutions for Nonlinear Parabolic Systems in the Lebesgue Sobolev Spaces with Variable Exponents, J. Math. Phys. Anal. Geom. 14 (1) (2018), 27-53.
- S. Fairouz, M. Messaoud, S. Kamel, Quasilinear parabolic problems in the Lebesgue-Sobolev Space with variable exponent and L1 -data. Communicated.
- X.L. Fan and D. Zhao, On the spaces Lp(x) (U) and W m;p(x) (U), J. Math. Anal. Appl. 263 (2001), 424-446.
- R. Landes, On the existence of weak solutions for quasilinear parabolic initial-boundary problems, Proc. R. Soc. Edinb., Sect. A, Math. 89 (1981), 321-366.
- J.-L. Lions, Quelques m ´ethodes de r ´esolution des probl ´emes aux limites non lin ´eaires. Dunod et Gauthier-Villars, 1969.
- S. Ouaro and A. Ou ´edraogo, Nonlinear parabolic equation with variable exponent and L1 - data. Electron. J. Differ. Equ. 2017 (2017), 32.
- Q. Liu and Z. Guo, C. Wang, Renormalized solutions to a reaction-diffusion system applied to image denoising, Discrete Contin. Dyn. Syst., Ser. B, 21 (6) (2016), 1839-1858.
- H. Redwane, Existence of solution for a class of nonlinear parabolic systems, Electron. J. Qual. Theory Differ. Equ. 2007 (2007), 24.
- M. Sanch ´on, J.M. Urbano, Entropy solutions for the p(x)-Laplace equation, Trans. Amer. Math. Soc. 361 (2009), 6387-6405.
- J. Simon, Compact sets in Lp(0, T;B), Ann. Mat. Pura Appl. 146 (1987), 65-96.
- A. Youssef. B. Jaouad. B. Abdelkader. M. Mounir, Existence of a renormalized solution for the nonlinear parabolic systems with unbounded nonlinearities, Int. J. Res. Rev. Appl. Sci. 14 (2013), 75-89.
- C. Zhang, Entropy solutions for nonlinear elliptic equations with variable exponents. Electron. J. Differ. Equ. 2014 (2014), 92.
- C. Zhang, S. Zhou , Renormalized and entropy solution for nonlinear parabolic equations with variable exponents and L1 data, J. Differ. Equ. 248 (2010), 1376-1400.