Invariant Summability and Unconditionally Cauchy Series

Main Article Content

Nimet Pancaroglu Akin

Abstract

In this study, we will give new characterizations of weakly unconditionally Cauchy series and unconditionally convergent series through summability obtained by the invariant convergence.

Article Details

References

  1. A. Aizpuru, A. Gutierrez-Davila, A. Sala, Unconditionally Cauchy series and Cesaro summability, J. Math. Anal. Appl. 324 (2006), 39-48.
  2. A. Aizpuru, R. Armario, F.J. Perez-Fernandez, Almost summability and unconditionally Cauchy series, Bull. Belg. Math. Soc. Simon Stevin. 15 (2008), 635-644.
  3. S. Banach, Theorie des operations lineaires. Chelsea Publishing company, New York, 1978.
  4. C. Bessaga, A. Pelczynski, On bases and unconditional convergence of series in Banach Spaces. Stud. Math. 17 (1958), 151-164.
  5. J. Boos, P. Cass, Classical and modern methods in summability, Oxford University Press, Oxford; New York, 2000.
  6. J. Diestel, Sequences and series in Banach spaces, Springer-Verlag, New York, 1984.
  7. H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241-244.
  8. G. Lorentz, A contribution to the theory of divergent sequences, Acta Math. 80 (1948), 167-190.
  9. C.W. Mcarthur.On relationships amongst certain spaces of sequences in an arbitrary Banach Space, Can. J. Math. 8 (1956), 192-197.
  10. M. Mursaleen, O.H.H. Edely, On the invariant mean and statistical convergence, Appl. Math. Lett. 22 (2009), 1700-1704.
  11. M. Mursaleen, Matrix transformation between some new sequence spaces, Houston J. Math. 9 (1983), 505-509.
  12. M. Mursaleen, On finite matrices and invariant means, Indian J. Pure Appl. Math. 10 (1979), 457-460.
  13. F. Nuray, W.H. Ruckle, Generalized statistical convergence and convergence free spaces, J. Math. Anal. Appl. 245 (2000), 513-527.
  14. F. Nuray, E. Sava ¸s, Invariant statistical convergence and A-invariant statistical convergence, Indian J. Pure Appl. Math. 10 (1994), 267-274.
  15. F. Nuray, H. G ¨ok, U. Ulusu, Iσ-convergence, Math. Commun. 16 (2011), 531-538.
  16. N. Pancaroˇglu, F. Nuray, Statistical lacunary invariant summability, Theor. Math. Appl. 3 (2) (2013), 71-78.
  17. N. Pancaroˇglu, F. Nuray, On Invariant Statistically Convergence and Lacunary Invariant Statistically Convergence of Sequences of Sets, Prog. Appl. Math. 5 (2) (2013), 23-29.
  18. F.J. Perez-Fernandez, F. Benitez-Trujillo, A. Aizpuru, Characterizations of completeness of normed spaces through weakly unconditionally Cauchy series, Czechoslovak Math. J. 50 (2000), 889?896.
  19. R.A. Raimi, Invariant means and invariant matrix methods of summability, Duke Math. J. 30 (1963), 81-94.
  20. P. Schaefer, Infinite matrices and invariant means, Proc. Amer. Math. Soc. 36 (1972), 104-110.
  21. I. J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly, 66 (1959), 361-375.
  22. E. Sava ¸s, Some sequence spaces involving invariant means, Indian J. Math. 31 (1989), 1-8.
  23. E. Sava ¸s, Strong σ-convergent sequences, Bull. Calcutta Math. 81 (1989), 295-300.
  24. E. Sava ¸s, F. Nuray, On σ-statistically convergence and lacunary σ-statistically convergence, Math. Slovaca, 43 (3) (1993), 309-315.