Fast Approximation of Algebraic and Logarithmic Hypersingular Type Singular Integrals with Highly Oscillatory Kernel

Main Article Content

Idrissa Kayijuka
Åžerife Müge Ege
Ali Konuralp
Fatma Serap Topal


Herein, highly oscillatory integrals with hypersingular type singularities are studied. After transforming the original integral into a sum of line integrals over a positive semi-infinite interval, a Gauss-related quadrature rule is constructed. The vehicle utilized is the moment's information. The comparison of two algorithms (Chebyshev and its modified one) to produce the recursion coefficients that satisfy orthogonal polynomial with respect to Gautschi logarithmic weight function, is investigated. Lastly, numerical examples are given to substantiate the effectiveness of the proposed method.

Article Details


  1. N. M. A. Nik Long and Z. K. Eshkuvatov, Hypersingular integral equation for multiple curved cracks problem in plane elasticity, Int. J. Solids Struct. 46 (2009), 2611-2617.
  2. I. A. Robertson, Diffraction of a plane longitudinal wave by a penny-shaped crack, Math. Proc. Cambridge Philos. Soc. 63 (1967), 229-238.
  3. M. Landahl and H. Ashley, Aerodynamics of Wings and Bodies. new york: Dover Publication, Inc. New York, 1985.
  4. A. Bostro, Review of hypersingular integral equation method for crack scattering and application to modeling of ultrasonic nondestructive evaluation, Appl. Mech. Rev. 56 (2003), 383-405.
  5. E. G. Ladopoulos, Singular Integral Equations: Linear and Non-linear Theory and its Applications in Science and Engineering, Berlin, Springer-Verlag Berlin Heidelberg, New York, 2000.
  6. J. Hadamard, Le Probleme de Cauchy et les Equations aux Derivees Particelles Lineaires Hyperboliques, Paris, France: Hermann, 1932.
  7. J. Hadamard, Lectures on Cauchy's Problem in Linear Partial Differential Equations, Yale University Press, 1932.
  8. G. Monegato, Numerical evaluation of hypersingular integrals, J. Comput. Appl. Math. 50 (1994), 9-31.
  9. J. Li and X. Li, The Modified Trapezoidal Rule for Computing Hypersingular Integral on Interval, J. Appl. Math. 2013 (2013).
  10. T. Hasegawa, T. Torii, An automatic quadrature for Cauchy principal value integrals, Math. Comp. 56 (1991), 741-741.
  11. G. Criscuolo, A new algorithm for Cauchy principal value and Hadamard finite-part integrals, J. Comp. Appl. Math. 78 (1997), 255-275.
  12. K. Diethelm, A method for the practical evaluation of the Hilbert transform on the real line, J. Comp. Appl. Math. 112 (1999), 45-53.
  13. M. A. Golberg, The convergence of several algorithms for solving integral equations with finite part integrals. II, Appl. Math. Comput. 21 (1987), 283-293.
  14. F. Erdogan, G. D. Gupta and T. S. Cook, Numerical solution of singular integral equations. in Methods of analysis and solutions of crack problems, Springer, The Netherlands, 1973.
  15. R. Piessens, E. de Doncker-Kapenga, C. W. Ãœberhuber and D. K. Kahaner, A Subroutine Package for Automatic Integration, Springer-Verlag, Berlin, 1983.
  16. C. W. Clenshaw and A. R. Curtis, A method for numerical integration on an automatic computer, Numer. Math. 2 (1960), 197-205.
  17. N. I. Muskhelishvili, Singular Integral Equations, Groningen, Noordhoff, The Netherlands, 1972.
  18. D. Elliott, Orthogonal polynomials associated with singular integral equations having a Cauchy kernel, SIAM J. Numer. Anal. 13 (1982), 1041-1052.
  19. E. Venturino, Recent developments in numerical solution of singular integral equations, J. Math. Anal. Appl. 115 (1986), 239-277.
  20. G. C. Hsiao, P. Kopp and W. L. Wendland, A Galerkin collocation method for some integral equations of the first kind, Computing. 25 (1980), 83-130.
  21. U. Zastrow, Numerical plane stress analysis by integral equations based on the singularity method, Solid Mach. Arch. 10 (1985), 113-128.
  22. W. Feng, H. Li, L.Gao, W. Qian and K. Yang, Hypersingular flux interface integral equation for multi-medium heat transfer analysis, Int. J. Heat Mass Transf. 138 (2019), 852-865.
  23. S. Alfaqeih and I. Kayijuka, Solving system of conformable fractional differential equation by conformable double Laplace decomposition method, J. Part. Differ. Equ. 33 (2020), 275-290.
  24. H.Kang and X. Shao, Fast computation of singular oscillatory Fourier transforms, Abstr. Appl. Anal. 2014 (2014), 984834.
  25. I. Kayijuka, J.P. Ndabakuranye and A. I. Hascelik, Computational Efficiency of Singular and Oscillatory Integrals with Algebraic Singularities, Asian J. Math. Comp. Res. 25 (2018), 285-302.
  26. R.S. Murray, L. Seymour, J. S. John and S. Dennis, Schaum's outline: Complex Variables: with an introduction to Conformal Mapping and its applications, Second Ed. McGraw-Hill, New York, 2009.
  27. D. Huybrechs and S. Vandewalle, On the Evaluation of Highly Oscillatory Integrals by Analytic Continuation, SIAM J. Numer. Anal. 44 (2006), 1026-1048.
  28. W. Gautschi, Gauss quadrature routines for two classes of logarithmic weight functions, Numer. Algorithms. 55 (2010), 265-277.
  29. J. S. Ball and N. H. F. Beebe, Efficient Gauss-related quadrature for two classes of logarithmic weight functions, ACM Trans. Math. Softw. 33 (2007), 1-21.
  30. G. H. Golub and J. H. Welsch, Calculation of Gauss Quadrature Rules, Math. Comput. 23 (1969), 221-230.
  31. J. Stoer and R. Bulirsch, Introduction to Numerical Analysis, 3rd ed. Springer, New York, 2002.
  32. J. G. F. Francis, The QR transform. A unitary analogue to the LR transformation, Comput. J. 4 (1961), 265-271.
  33. I. S. M. Abramowitz, Handbook of Mathematical Functions, National Bureau of Standards, 1964.
  34. W. Gautschi, Algorithm 726: ORTHPOL-A Package of Routines for Generating Orthogonal Polynomials and Gauss-Type Quadrature Rules, ACM Trans. Math. Softw. 20 (1994), 21-62.
  35. L. Gatteschi, On Some Orthogonal Polynomial Integrals, Math. Comput. 35 (1980), 1291-1298.
  36. W. Gautschi, Orthogonal Polynomials: Computation and Approximation, Oxford University Press, 2004.