Some Results of Rational Contraction Mapping via Extended CF-Simulation Function in Metric-Like Space with Application
Main Article Content
Abstract
In this paper, we introduce a new contraction via CF -simulation function and prove the existence and the uniqueness of our mapping defined on a metric-like space. Our work generalizes and extends some theorems in the literature. An example and application of second type of Fredholm integral equation are given.
Article Details
References
- S. Banach, Sur les Operations dans les Ensembles Abstraits et Leur Applications aux Equations Integrals, Fund. Math. 3 (1922), 133-181.
- H. Qawaqneh, M. Noorani, W. Shatanawi, H. Alsamir, Common Fixed Point Theorems for Generalized Geraghty (α, ψ, φ)- Quasi Contraction Type Mapping in Partially Ordered Metric-Like Spaces, Axioms. 7 (2018), 74.
- H. Alsamir, M. Selmi Noorani, W. Shatanawi, H. Aydi, H. Akhadkulov, H. Qawaqneh, K. Alanazi, Fixed Point Results in Metric-like Spaces via Sigma-simulation Functions, Eur. J. Pure Appl. Math. 12 (2019), 88-100.
- A.F. Roldan-L ´opez-de-Hierro, E. Karapinar, C. Rold ´an-L ´opez-de-Hierro, J. Mart ´iinez-Moreno, Coincidence point theorems on metric spaces via simulation functions, J. Comput. Appl. Math. 275 (2015), 345-355.
- X.L. Liu, A.H. Ansari, S. Chandok, S. Radenovic, On some results in metric spaces using auxiliary simulation functions via new functions, J. Comput. Anal. Appl. 24(6) (2018), 1103-1114.
- H. Aydi, A. Felhi, Best proximity points for cyclic Kannan-Chatterjea- Ciric type contractions on metric-like spaces, J. Nonlinear Sci. Appl. 9 (2016), 2458-2466.
- H. Aydi, A. Felhi, On best proximity points for various alpha-proximal contractions on metric-like spaces, J. Nonlinear Sci. Appl. 9 (2016), 5202-5218.
- H. Alsamir, M.S. Md Noorani H. Qawagneh, K. Alanazi, Modified cyclic(α, β)-admissible Z-contraction mappings in metric-like spaces, Asia-Pacific Conference on Applied Mathematics and Statistics, 2019.
- H. Alsamir, M. Noorani, W. Shatanawi, K. Abodyah, Common fixed point results for generalized (ψ, β)-Geraghty contraction type mapping in partially ordered metric-like spaces with application, Filomat 31(17) (2017), 5497-5509.
- H. Aydi, A. Felhi, H. Afshari, New Geraghty type contractions on metric-like spaces, J. Nonlinear Sci. Appl. 10 (2017), 780-788.
- A.A. Harandi, Metric-like spaces, partial metric spaces and fixed points, Fixed Point Theory Appl. 2012 (2012), 204.
- E. Karapinar, P. Salimi, Dislocated metric space to metric spaces with some fixed point theorems, Fixed Point Theory Appl. 2013 (2013), 222.
- F.Yan, Y. Su, Q. Feng, A new contraction mapping principle in partially ordered metric spaces and applications to ordinary differential equations. Fixed Point Theory Appl. 2012 (2012), 152.
- B. Samet, C. Vetro, P. Vetro, Fixed point theorems for a α - ψ-contractive type mappings. Nonlinear Anal., Theory Meth. Appl. 75(4) (2012), 2154-2165.
- H. Alsamir, M. Noorani,W. Shatanawi, F. Shaddad, Generalized Berinde-type (η, ξ, Ï‘, θ) contractive mappings in b-metric spaces with an application, J. Math. Anal. 7(6) (2016), 1-12.
- H. Alsamir, M. Noorani, W. Shatanawi, On fixed points of (η, θ)-quasi contraction mappings in generalized metric spaces. J. Nonlinear Sci. Appl. 9 (2016), 4651-4658.
- H. Alsamir, M. S. M. Noorani, W. Shatanawi, On new fixed point theorems for three types of (α, β) - (ψ, θ, φ)-multivalued contractive mappings in metric spaces. Cogent Math. 3(1) (2016), 1257473.
- W. Shatanawi, M. Noorani, J. Ahmad, H. Alsamir, M. Kutbi, Some common fixed points of multivalued mappings on complex-valued metric spaces with homotopy result. J. Nonlinear Sci. Appl. 10 (2017), 3381-3396.
- H. Akhadkulov, M. S. Noorani, A. B. Saaban, F. M. Alipiah, H. Alsamir. Notes on multidimensional fixed-point theorems. Demonstr. Math. 50(1) (2017), 360-374.
- H. Qawagneh, Noorani, W. Shatanawi, H. Alsamir. Common fixed points for pairs of triangular α-admissible mappings. J. Nonlinear Sci. Appl 10 (2017), 6192-6204.
- H. Qawagneh, M. S. M. Noorani, W. Shatanawi, K. Abodayeh, H. Alsamir. Fixed point for mappings under contractive condition based on simulation functions and cyclic (α, β)-admissibility. J. Math. Anal. 9 (2018), 38-51.
- H. Alsamir, M. Noorani, W. Shatanawi, Fixed point results for new contraction involving C-class functions in partial metric spaces, https://www.researchgate.net/publication/332396635_Fixed_point_results_for_new_ contraction_involving_C-class_functions_in_partail_metric_spaces, 2017.
- H. Argoubi, B. Samet, C. Vetro, Nonlinear contractions involving simulation functions in a metric space with a partial order, J. Nonlinear Sci. Appl. 8 (2015), 1082-1094.
- S.G. Matthews, Partial metric topology. In Proceedings of the 8th Summer Conference on General Topology and Applications, Ann. N.Y. Acad. Sci. 728 (1994), 183-197.
- A. Chandaa, A. Ansari, L. Kanta Dey, B. Damjanovi`c. On Non-Linear Contractions via Extended CF-Simulation Functions. Filomat 32(10) (2018), 3731-3750
- A.H. Ansari. Note on φ - ψ-contractive type mappings and related fixed point. In: The 2nd Regional Conference on Mathematics and Applications, Payame Noor University, pp. 377-380, 2014.
- A.F. Rold ´an-L ´opez-de-Hierro, B. Samet. φ-admissibility results via extended simulation functions. J. Fixed Point Theory Appl. 19(3) (2017), 1997-2015.